Answer:
x=2(twice)
y=0(twice)
Step-by-step explanation:
This question can be solved using substitution method
So let's solve
y=x+2....(1)
y=x2+5x+6....(2)
Substitute (1) into(2)
X+2=x2+5x+6
Collect like terms
X2+5x-x+6-2=0
X2+4x+4=0
X2+2x+2x+4=0
X(x+2)+2(x+2)=0
(X+2)(x+2)=0
X+2=0
Substrate 2 from both sides
X=-2
X+2=0
X=-2
Let's substitute the value of x into (1)
y=x+2
y=-2+2
Y=0(twice)
The acceleration of the particle is given by the formula mentioned below:

Differentiate the position vector with respect to t.
![\begin{gathered} \frac{ds(t)}{dt}=\frac{d}{dt}\sqrt[]{\mleft(t^3+1\mright)} \\ =-\frac{1}{2}(t^3+1)^{-\frac{1}{2}}\times3t^2 \\ =\frac{3}{2}\frac{t^2}{\sqrt{(t^3+1)}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7Bds%28t%29%7D%7Bdt%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5Csqrt%5B%5D%7B%5Cmleft%28t%5E3%2B1%5Cmright%29%7D%20%5C%5C%20%3D-%5Cfrac%7B1%7D%7B2%7D%28t%5E3%2B1%29%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D%5Ctimes3t%5E2%20%5C%5C%20%3D%5Cfrac%7B3%7D%7B2%7D%5Cfrac%7Bt%5E2%7D%7B%5Csqrt%7B%28t%5E3%2B1%29%7D%7D%20%5Cend%7Bgathered%7D)
Differentiate both sides of the obtained equation with respect to t.
![\begin{gathered} \frac{d^2s(t)}{dx^2}=\frac{3}{2}(\frac{2t}{\sqrt[]{(t^3+1)}}+t^2(-\frac{3}{2})\times\frac{1}{(t^3+1)^{\frac{3}{2}}}) \\ =\frac{3t}{\sqrt[]{(t^3+1)}}-\frac{9}{4}\frac{t^2}{(t^3+1)^{\frac{3}{2}}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7Bd%5E2s%28t%29%7D%7Bdx%5E2%7D%3D%5Cfrac%7B3%7D%7B2%7D%28%5Cfrac%7B2t%7D%7B%5Csqrt%5B%5D%7B%28t%5E3%2B1%29%7D%7D%2Bt%5E2%28-%5Cfrac%7B3%7D%7B2%7D%29%5Ctimes%5Cfrac%7B1%7D%7B%28t%5E3%2B1%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%29%20%5C%5C%20%3D%5Cfrac%7B3t%7D%7B%5Csqrt%5B%5D%7B%28t%5E3%2B1%29%7D%7D-%5Cfrac%7B9%7D%7B4%7D%5Cfrac%7Bt%5E2%7D%7B%28t%5E3%2B1%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5Cend%7Bgathered%7D)
Substitute t=2 in the above equation to obtain the acceleration of the particle at 2 seconds.
![\begin{gathered} a(t=1)=\frac{3}{\sqrt[]{2}}-\frac{9}{4\times2^{\frac{3}{2}}} \\ =1.32ft/sec^2 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20a%28t%3D1%29%3D%5Cfrac%7B3%7D%7B%5Csqrt%5B%5D%7B2%7D%7D-%5Cfrac%7B9%7D%7B4%5Ctimes2%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%5C%20%3D1.32ft%2Fsec%5E2%20%5Cend%7Bgathered%7D)
The initial position is obtained at t=0. Substitute t=0 in the given position function.
The question is an annuity question with the present value of the annuity given.
The
present value of an annuity is given by PV = P(1 - (1 + r/t)^-nt) /
(r/t) where PV = $61,600; r = interest rate = 9.84% = 0.0984; t = number
of payments in a year = 6; n = number of years = 11 years and P is the
periodic payment.
61600 = P(1 - (1 + 0.0984/6)^-(11 x 6)) / (0.0984 / 6)
61600 = P(1 - (1 + 0.0164)^-66) / 0.0164
61600 x 0.0164 = P(1 - (1.0164)^-66)
1010.24 = P(1 - 0.341769) = 0.658231P
P = 1010.24 / 0.658231 = 1534.78
Thus, Niki pays $1,534.78 every two months for eleven years.
The total payment made by Niki = 11 x 6 x 1,534.78 = $101,295.48
Therefore, interest paid by Niki = $101,295.48 - $61,600 = $39,695.48
Answer:
25x² − 20x + 4
Explanation:
(5x − 2)²
= (5x + −2)(5x + −2)
= (5x)(5x) + (5x)(−2) + (−2)(5x) + (−2)(−2)
= 25x² − 10x − 10x + 4
= 25x² − 20x + 4
<h3>
Answer: 31 games</h3>
======================================================
Explanation:
- 32/2 = 16 games will happen in round 1. Afterward, 16 teams are left.
- 16/2 = 8 games will happen in round 2. Afterward, 8 teams are left.
- 8/2 = 4 games happen in round 3.
- 4/2 = 2 games in round 4.
- 2/2 = 1 game as the final championship.
Count the number of times you divide by two and we have five occurrences of this. So there five rounds overall.
To get the total number of games played, we add up the quotients
16+8+4+2+1 = 31
----------------
Or as a shortcut we can simply subtract off 1 since 1+2+4+...+2^n = 2^(n+1)-1
We can write that rule as

which is equivalent to
