Answer:
(-1,2) y=2 x=-1
Step-by-step explanation:
This is a system of equations and in this you see there is 3x and negative three x. To solve this you need tp get rid of one of the variables. so we can add the two equations together to get 3y=6. This means that y=2 if we divide by 3 on both sides. Then we just plug 3 in for y and we get 3x+10=7. We subtract 10 on both sides to get 2x=-3 which means x=-1.
X² <span>+ 11x + 7
because 7 is a prime number, this doesn't factor prettily. you'll want to use the quadratic formula; if you aren't familiar with it, i'd either research it or look it up in your textbook, because it's clunky and not easily understood in this format:
(-b </span>± √((b)² - 4ac))/(2a)
in your equation x² + 11x + 7 ... a = 1, b = 11, and c = 7. what you do is you take the coefficients of every term, then plug it into your equation:
(-11 ± √((11)² - 4(1)(7))/(2(1))
not pretty, i know. but, regardless, you can simplify it:
(-11 ± √((11)² - 4(1)(7))/(2(1))
(-11 ± √(121 - 28))/2
(-11 ± √93)/2
and you can't simplify it further. -11 isn't divisible by 2, and 93 doesn't have a perfect square that you can take out from beneath the radical. the ± plus/minus symbol indicates that you have 2 answers, so you can write them out separately:
(x - (-11 - √93)/2) and (x + (-11 - √93)/2)
they look confusing, but those are your two factors. they can be simplified just slightly by changing the signs in the middle due to the -11:
(x + (11 + √93)/2) (x - (11 - √93)/2)
and how these would read, just in case the formatting is too confusing for you: x plus the fraction 11 + root 93 divided by 2. the 11s and root 93s are your numerator, 2s are your denominator.
195 is divisible by 13 and 15
Hope this helped