What is 7x30 = 7 x --- tens = --- tens = ---
Answer:
The answer is "
"
Step-by-step explanation:
Given values:

Using formula:

Put the values in the above formula:

Checking the <span>discontinuity at point -4
from the left f(-4) = 4
from the right f(-4) = (-4+2)² = (-2)² = 4
∴ The function is continues at -4
</span>
<span>Checking the <span>discontinuity at point -2
from the left f(-2) = </span></span><span><span>(-2+2)² = 0
</span>from the right f(-2) = -(1/2)*(-2)+1 = 2
∴ The function is jump discontinues at -2
</span>
<span>Checking the <span>discontinuity at point 4
from the left f(4) = </span></span><span><span>-(1/2)*4+1 = -1
</span>from the right f(4) = -1
but there no equality in the equation so,
</span><span>∴ The function is discontinues at 4
The correct choice is the second
point </span>discontinuity at x = 4 and jump <span>discontinuity at x = -2</span>
A: (x + 5i)^2
= (x + 5i)(x + 5i)
= (x)(x) + (x)(5i) + (5i)(x) + (5i)(5i)
= x^2 + 5ix + 5ix + 25i^2
= 25i^2 + 10ix + x^2
B: (x - 5i)^2
= (x + - 5i)(x + - 5i)
= (x)(x) + (x)(- 5i) + (- 5i)(x) + (- 5i)(- 5i)
= x^2 - 5ix - 5ix + 25i^2
= 25i^2 - 10ix + x^2
C: (x - 5i)(x + 5i)
= (x + - 5i)(x + 5i)
= (x)(x) + (x)(5i) + (- 5i)(x) + (- 5i)(5i)
= x^2 + 5ix - 5ix - 25i^2
= 25i^2 + x^2
D: (x + 10i)(x - 15i)
= (x + 10i)(x + - 15i)
= (x)(x) + (x)(- 15i) + (10i)(x) + (10i)(- 15i)
= x^2 - 15ix + 10ix - 150i^2
= - 150i^2 + 5ix + x^2
Hope that helps!!!