Answer: 81%
Step-by-step explanation:
From the question, we are informed that a student received the following test scores: 71%, 89%, 72%,
84% and 83% in 5 tests and the student wants to maintain an average of 80%.
The lowest score/grade they can receive on the next test to maintain at least an 80% average first thus:
First, to make it easy we can remove the percent sign. Then we multiply 80 by 6 since we're calculating for 6 tests scores. This will be:
= 80 × 6
= 480
We then add all the 5 test scores. This will be:
= 71 + 89 + 72 + 84 + 83
= 399
We then subtract the values gotten. This will be:
= 480 - 399
= 81
This means the student must get at least 81%
Answer:
x = -1
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Step-by-step explanation:
<u>Step 1: Define</u>
0 = 4x + 4
<u>Step 2: Solve for </u><em><u>x</u></em>
- Subtract 4 on both sides: -4 = 4x
- Divide 4 on both sides: -1 = x
- Rewrite: x = -1
Construct the perpendicular to <span><span>QR</span><span>¯¯¯¯¯</span></span><span> that passes through point </span>X<span>.</span>
Answer:
see explanation
Step-by-step explanation:
To determine which ordered pairs are solutions to the equation
Substitute the x and y values into the left side of the equation and if equal to the right side then they are a solution.
(- 1, - 6)
3(- 1) - 4(- 6) = - 3 + 24 = 21 = right side ← thus a solution
(- 3, 3)
3(- 3) - 4(3) = - 9 - 12 = - 21 ≠ 21 ← not a solution
(11, 3)
3(11) - 4(3) = 33 - 12 = 21 = right side ← thus a solution
(7, 0)
3(7) - 4(0) = 21 - 0 = 21 = right side ← thus a solution
The ordered pairs (- 1, - 6), (11, 3), (7, 0) are solutions to the equation