Consider the equation  .
. 
First, you can use the substitution  , then
, then  and equation becomes
 and equation becomes  . This equation is quadratic, so
. This equation is quadratic, so
 .
.
Then you can factor this equation:
 .
.
Use the made substitution again:
 .
.
You have in each brackets the expression like  that is equal to
 that is equal to  . Thus,
. Thus,
![x^3+5=(x+\sqrt[3]{5})(x^2-\sqrt[3]{5}x+\sqrt[3]{25}) ,\\x^3+1=(x+1)(x^2-x+1)](https://tex.z-dn.net/?f=%20x%5E3%2B5%3D%28x%2B%5Csqrt%5B3%5D%7B5%7D%29%28x%5E2-%5Csqrt%5B3%5D%7B5%7Dx%2B%5Csqrt%5B3%5D%7B25%7D%29%20%2C%5C%5Cx%5E3%2B1%3D%28x%2B1%29%28x%5E2-x%2B1%29%20%20%20)
and the equation is 
![(x+\sqrt[3]{5})(x^2-\sqrt[3]{5}x+\sqrt[3]{25})(x+1)(x^2-x+1)=0](https://tex.z-dn.net/?f=%20%28x%2B%5Csqrt%5B3%5D%7B5%7D%29%28x%5E2-%5Csqrt%5B3%5D%7B5%7Dx%2B%5Csqrt%5B3%5D%7B25%7D%29%28x%2B1%29%28x%5E2-x%2B1%29%3D0%20%20%20) .
.
Here ![x_1=-\sqrt[3]{5} , x_2=-1](https://tex.z-dn.net/?f=%20x_1%3D-%5Csqrt%5B3%5D%7B5%7D%20%2C%20x_2%3D-1%20) and you can sheck whether quadratic trinomials have real roots:
 and you can sheck whether quadratic trinomials have real roots:
1. ![D_1=(-\sqrt[3]{5}) ^2-4\cdot \sqrt[3]{25}=\sqrt[3]{25} -4\sqrt[3]{25} =-3\sqrt[3]{25}](https://tex.z-dn.net/?f=%20D_1%3D%28-%5Csqrt%5B3%5D%7B5%7D%29%20%5E2-4%5Ccdot%20%5Csqrt%5B3%5D%7B25%7D%3D%5Csqrt%5B3%5D%7B25%7D%20-4%5Csqrt%5B3%5D%7B25%7D%20%3D-3%5Csqrt%5B3%5D%7B25%7D%20%20%3C0%20) .
.
2.  .
.
This means that quadratic trinomials don't have real roots.
Answer:  ![x_1=-\sqrt[3]{5} , x_2=-1](https://tex.z-dn.net/?f=%20x_1%3D-%5Csqrt%5B3%5D%7B5%7D%20%2C%20x_2%3D-1%20) 
 
If you need complex roots, then
![x_{3,4}=\dfrac{\sqrt[3]{5}\pm i\sqrt{3\sqrt[3]{25}}}{2}   ,\\ \\x_{5,6}=\dfrac{1\pm i\sqrt{3}}{2}](https://tex.z-dn.net/?f=%20x_%7B3%2C4%7D%3D%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%5Cpm%20i%5Csqrt%7B3%5Csqrt%5B3%5D%7B25%7D%7D%7D%7B2%7D%20%20%20%2C%5C%5C%20%5C%5Cx_%7B5%2C6%7D%3D%5Cdfrac%7B1%5Cpm%20i%5Csqrt%7B3%7D%7D%7B2%7D%20%20%20%20) .
.
 
        
             
        
        
        
Answer:
x = 20
Step-by-step explanation:
90 = 60 + (x + 10)
90 - 60 = x + 10
30 = x + 10
30 - 10 = x
20 = x
 
        
                    
             
        
        
        
9514 1404 393
Answer:
   see attached
Step-by-step explanation:
It isn't clear what is supposed to go in the various blanks. We have elected to identify the corresponding congruent parts, and name the congruent triangles. The postulate supporting the conclusion is also shown. 
In most cases, corresponding parts are marked congruent. The exception is the vertical angles in figure 22.
 
        
                    
             
        
        
        
Answer:
The least common multiple is 30. Hope that helps!! 
Step-by-step explanation:
 
        
             
        
        
        
2
Hope this helps
Mark brainliest please