1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dedylja [7]
3 years ago
7

Which number is an integer, a whole number, and a counting (natural) number? a) 0 b) -1 c) 15 d) 0.5

Mathematics
1 answer:
velikii [3]3 years ago
7 0
C. 15

-1 is not a natural number so B is not your answer

0.5 is not a whole number so D is not your answer

0 is not a natural number so A is not your answer
You might be interested in
Prove that an = 4^n + 2(-1)^nis the solution to
olga nikolaevna [1]

Answer:

See proof below

Step-by-step explanation:

We have to verify that if we substitute a_n=4^n+2(-1)^n in the equation a_n=3a_{n-1}+4a_{n-2} the equality is true.

Let's substitute first in the right hand side:

3a_{n-1}+4a_{n-2}=3(4^{n-1}+2(-1)^{n-1})+4(4^{n-2}+2(-1)^{n-2})

Now we use the distributive laws. Also, note that (-1)^{n-1}=\frac{1}{-1}(-1)^n=(-1)(-1)^{n} (this also works when the power is n-2).

=3(4^{n-1})+6(-1)^{n-1}+4(4^{n-2})+8(-1)^{n-2}

=3(4^{n-1})+(-1)(6)(-1)^{n}+4^{n-1}+(-1)^2(8)(-1)^{n}

=4(4^{n-1})-6(-1)^{n}+8(-1)^{n}=4^n+2(-1)^n=a_n

then the sequence solves the recurrence relation.

4 0
3 years ago
Calculate the size of each interior angle of a regular polygon with 14 sides
Ierofanga [76]

Answer:

154.285

Step-by-step explanation:

The sum of the interior angles of a 14-gon = (14-2)*180 = 2,160 degrees. There are 14 vertexes (vertices) for a 14-gon. It is 'regular' so all these angles are equal. By dividing 2160 (sum of all angles) by 14 (total amount of angles) we can see how much each angle is worth. So the interior angle of each is 154.285 degrees.

4 0
3 years ago
Simplify completely. (w^15/w^5)^4 <br> HELP PLEASE
Umnica [9.8K]

Answer:

w^{40}

Step-by-step explanation:

To simplify recall exponent rules:

1. An exponent is only a short cut for multiplication. It simplifies how we write the expression.

2. When we multiply terms with the same bases, we add exponents.

3. When we divide terms with the same bases, we subtract exponents.

4. When we have a base to the exponent of 0, it is 1.

5. A negative exponent creates a fraction.

6. When we raise an exponent to an exponent, we multiply exponents.

7. When we have exponents with parenthesis, we apply it to everything in the parenthesis.

We will use these rules to simplify.

Use rule #3 to simplify inside the parenthesis first.

\frac{w^{15}}{w^5}  = w^{10}

Now simplify the exponent of 4 using rule 6.

(w^{10})^4 = w^{40}


8 0
3 years ago
If angle B is two more than three times the measure of angle C, and angle B are
GalinKa [24]

Set up a system of equations:

B=2+3C

B+C=90

The variable B is already solved, so plug into bottom equation:

2+3C+C=90

2+4C=90

4C=88

C=22

Plug C back in:

B+22=90

B=68

So B is 68 degrees and C is 22 degrees

Hope this helped!

6 0
3 years ago
Solve using the quadratic formula: 2n^2= 6n - 2
bekas [8.4K]

Answer:

n_1=(3 + 1\sqrt{5} )/2\\\\n_2=(3 - 1\sqrt{5} )/2

Step-by-step explanation:

2n^2= 6n - 2\\\\2n^2-6n+2=0\\\\a=2\\\\b=-6\\\\c=2

n=(-b \pm \sqrt{b^2-4ac} )/2a\\\\n=(-(-6) \pm \sqrt{(-6)^2-4(2)(2)} )/2(2)\\\\n=(6 \pm \sqrt{36-16} )/4\\\\n=(6 \pm \sqrt{20} )/4\\\\n=(6 \pm 2\sqrt{5} )/4\\\\n=(3 \pm 1\sqrt{5} )/2\\\\n_1=(3 + 1\sqrt{5} )/2\\\\n_2=(3 - 1\sqrt{5} )/2

3 0
3 years ago
Other questions:
  • This too? thank you so much
    15·2 answers
  • Write the number in two other forms 8.517
    15·1 answer
  • Halie is a perfectionist and wants each piece of her cake to be exactly the same area. if the diameter of her cake is 12 in and
    10·1 answer
  • The range of which function includes –4?
    13·2 answers
  • What is the square root of 55
    12·1 answer
  • Write and equation for a line perpendicular to 3y+15x=-12 and passing through the point (5,6)
    5·1 answer
  • Need help ASAP
    14·1 answer
  • Actions with Unlike Denominators Find the sum. Give your answer in simplest form. 3 16 + 5 8​
    14·1 answer
  • Solve for [?]. Assume that lines which appear tangent are tangent.
    6·1 answer
  • A) ¿Cuántas veces contiene la unidad base a la correspondiente del prefijo deci?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!