1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harlamova29_29 [7]
3 years ago
10

What is 600,319,287,914 + 297,997,000,026?

Mathematics
2 answers:
geniusboy [140]3 years ago
6 0

898316287940

hope this helps, back to my hole i go

Alex Ar [27]3 years ago
6 0

Step-by-step explanation:

please mark me as brainlest

You might be interested in
Solve for n. (7^2)^4 = n^8
enyata [817]
7^2x4 = n^8
7^8 = n^8
n = 7
4 0
2 years ago
I need help ASAP. Thank you
Fed [463]
Here is the link to the graph. You can scale it and tweak it.
https://www.desmos.com/calculator/mawkflj9ws

Hope this helped!


8 0
3 years ago
F/13 = 6.2 what is the value of f
nekit [7.7K]

Answer:

The value of f is 80.6.

Step-by-step explanation:

We are given the equation and asked to solve for f.

If we are given a fraction with a variable in the numerator, we can multiply both sides of the equation by the denominator to isolate it.

For example, if you look at this equation:

\displaystyle\frac{a}{26}=17.9

We can multiply both sides by 26 to get the a by itself so the equation can be solved.

\displaystyle26\times\frac{a}{26}=17.9\times26\\\\a = 465.4

Therefore, we can apply this same technique to the equation \frac{f}{13}=6.2.

\displaystyle\frac{f}{13}=6.2\\\\13\times\frac{f}{13}=6.2\times13\\\\f = 80.6\ \text{or} \ \frac{403}{5}

Therefore, the value of f is 80.6.

5 0
3 years ago
Read 2 more answers
Prove that $5^{3^n} + 1$ is divisible by $3^{n + 1}$ for all nonnegative integers $n.$
Viktor [21]

When n=0, we have

5^{3^0} + 1 = 5^1 + 1 = 6

3^{0 + 1} = 3^1 = 3

and of course 3 | 6. ("3 divides 6", in case the notation is unfamiliar.)

Suppose this is true for n=k, that

3^{k + 1} \mid 5^{3^k} + 1

Now for n=k+1, we have

5^{3^{k+1}} + 1 = 5^{3^k \times 3} + 1 \\\\ ~~~~~~~~~~~~~ = \left(5^{3^k}\right)^3 + 1^3 \\\\ ~~~~~~~~~~~~~ = \left(5^{3^k} + 1\right) \left(\left(5^{3^k}\right)^2 - 5^{3^k} + 1\right)

so we know the left side is at least divisible by 3^{k+1} by our assumption.

It remains to show that

3 \mid \left(5^{3^k}\right)^2 - 5^{3^k} + 1

which is easily done with Fermat's little theorem. It says

a^p \equiv a \pmod p

where p is prime and a is any integer. Then for any positive integer x,

5^3 \equiv 5 \pmod 3 \implies (5^3)^x \equiv 5^x \pmod 3

Furthermore,

5^{3^k} \equiv 5^{3\times3^{k-1}} \equiv \left(5^{3^{k-1}}\right)^3 \equiv 5^{3^{k-1}} \pmod 3

which goes all the way down to

5^{3^k} \equiv 5 \pmod 3

So, we find that

\left(5^{3^k}\right)^2 - 5^{3^k} + 1 \equiv 5^2 - 5 + 1 \equiv 21 \equiv 0 \pmod3

QED

5 0
1 year ago
What is the product in lowest terms? 8/15 * -3/10
german
Multiply the numerators and denominators together:

-24/150

Divide the numerator and denominator by 6:

-24 / 6 = -4
150 / 6 = 25

-4/25
4 0
3 years ago
Other questions:
  • 62.686to the nearest hundredrhs
    14·2 answers
  • 5k-3(2k-2/3)-9=0. Solve the equation
    9·1 answer
  • Solve −2(2x + 5) − 3 = −3(x − 1)
    7·2 answers
  • Circle K is shown. Tangents S T and U T intersect at point T outside of the circle. A line is drawn from point T to point R on t
    13·2 answers
  • The given line passes through the points and (4, 1).
    5·2 answers
  • A pyramid whose length= 12 ft,width = 7ft,and height = 10ft.​
    7·1 answer
  • What is the answer to this equation 3/5+1/6
    8·1 answer
  • 1 1/4 + .67 answer please
    8·2 answers
  • What is the distance between -24 and -16.5 on a number line?
    10·2 answers
  • X(x+3)(x+3)=0<br><br> solve the equation only one answer
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!