Answer:
First off, we look for which circles are open or closed.
We start with an open interval since the circle on the left is open and end with a closed interval since the circle on the right is closed.
Domain is all x values, Range is all y values
The graph shows the continous function going from -3 to 1 on the x axis.
According to the circles, this means our domain will be (-3,1].
Now, the range doesn't care about if its closed or not. So we can say the graph is on the y axis from -4 and 0. This means the range is -4<y<0
I used different notations for both just incase you need to represent your answer differently :)
-3<x<1 & (-3,1] . Range is [-4,0]. 0>y>-4 looks correct as-well.
Answer:
<h3>#1</h3>
<u>The system of equations:</u>
- 2x + 7y = -11
- 3x + 5y = -22
Solve by elimination.
<u>Triple the first equation, double the second one, subtract the second from the first and solve for y:</u>
- 3(2x + 7y) - 2(3x + 5y) = 3(-11) - 2(-22)
- 6x + 21y - 6x - 10y = -33 + 44
- 11y = 11
- y = 1
<u>Find x:</u>
- 2x + 7*1 = -11
- 2x = -11 - 7
- 2x = -18
- x = -9
<u>The solution is:</u>
<h3>#2</h3>
<u>Simplifying in steps:</u>
- 8u - 29 > -3(3 - 4u)
- 8u - 29 > - 9 + 12u
- 12u - 8u < -29 + 9
- 4u < -20
- u < -5
$72.
20% of 60 is 12
$12 + $60 = $72
30. You’d do 180 divided by 6 :)
First of all, find a program or a calculator that will give you the answer. Then you'll know how to make your table. I recommend Desmos. I have inserted the final graph for you.
Make up a table for this graph. Put the lowest point as the central entry in your graph.
x y
-4
-3
-2
-1
0
Now fill in the y values.
x y
-4 1
-3 -3.5
-2 -5
-1 -3.5
0 1
You can use the outline of the parabola and then mark the outline with the points in the table.