ANSWER

Or

EXPLANATION
The given polynomial is

where a=1,b=k, c=30
Let the zeroes of this polynomial be m and n.
Then the sum of roots is

and the product of roots is

The square difference of the zeroes is given by the expression.

From the question, this difference is 169.
This implies that:





We substitute the values of k into the equation and solve for x.


The zeroes are given by;


Answer: r/4 units
Step-by-step explanation: Each side of a square is of the same length, perimeter is the sum of the 4 length, length of a side of square = r/4 units
Your answer is -9x I'm 100% sure
I hope this helps
(a)
The average rate of change of f on the interval 0 ≤ x ≤ π is

____________
(b)

The slope of the tangent line is

.
____________
(c)
The absolute minimum value of f occurs at a critical point where f'(x) = 0 or at endpoints.
Solving f'(x) = 0

Use zero factor property to solve.

so that factor will not generate solutions.
Set cos(x) - sin(x) = 0

cos(x) = 0 when x = π/2, 3π/2, but x = π/2. 3π/2 are not solutions to the equation. Therefore, we are justified in dividing both sides by cos(x) to make tan(x):
![\displaystyle\cos(x) = \sin(x) \implies 0 = \frac{\sin (x)}{\cos(x)} \implies 0 = \tan(x) \implies \\ \\ x = \pi/4,\ 5\pi/4\ \forall\ x \in [0, 2\pi]](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ccos%28x%29%20%3D%20%5Csin%28x%29%20%5Cimplies%200%20%3D%20%5Cfrac%7B%5Csin%20%28x%29%7D%7B%5Ccos%28x%29%7D%20%5Cimplies%200%20%3D%20%5Ctan%28x%29%20%5Cimplies%20%5C%5C%20%5C%5C%0Ax%20%3D%20%5Cpi%2F4%2C%5C%205%5Cpi%2F4%5C%20%5Cforall%5C%20x%20%5Cin%20%5B0%2C%202%5Cpi%5D)
We check the values of f at the end points and these two critical numbers.




There is only one negative number.
The absolute minimum value of f <span>on the interval 0 ≤ x ≤ 2π is

____________
(d)
The function f is a continuous function as it is a product of two continuous functions. Therefore,

g is a differentiable function; therefore, it is a continuous function, which tells us

.
When we observe the limit

, the numerator and denominator both approach zero. Thus we use L'Hospital's rule to evaluate the limit.


thus

</span>