Answer:
The expression used to find the change in temperature per hour is Algebraic expression
Thus per hour; the temperature falls at the rate of
Step-by-step explanation:
A temperature falls from 0 to
in 
Which expression finds the change in temperature per hour.
From the above given information;
The initial temperature is 0
The final temperature is
The change in temperature is 


Thus;
-12.25 ° = 3.5 hours
To find the change in x° per hour; we have;
x° = 1 hour
The expression used to find the change in temperature per hour is Algebraic expression
From above if we cross multiply ; we have;
(- 12.25° × 1 hour) = (x° × 3.5 hour)
Divide both sides by 3.5 hours; we have:

x° = - 3.5
x° = 
Thus per hour; the temperature falls at the rate of