<h2>
Answer: 12 s</h2>
Explanation:
The situation described here is parabolic movement. However, as we are told <u>the instrument is thrown upward</u> from the surface, we will only use the equations related to the Y axis.
In this sense, the main movement equation in the Y axis is:
(1)
Where:
is the instrument's final position
is the instrument's initial position
is the instrument's initial velocity
is the time the parabolic movement lasts
is the acceleration due to gravity at the surface of planet X.
As we know
and
when the object hits the ground, equation (1) is rewritten as:
(2)
Finding
:
(3)
(4)
(5)
Finally:

Answer:
a) 42 m/s, positive direction (to the east), b) 42 m/s, negative direction (to the west).
Explanation:
a) Let consider that Car A is moving at positive direction. Then, the relative velocity of Car A as seen by the driver of Car B is:

42 m/s, positive direction (to the east).
b) The relative velocity of Car B as seen by the drive of Car A is:

42 m/s, negative direction (to the west).
Answer:

Explanation:
The density changes means that the length in the direction of the motion is changed.
Therefore,

Given :
Side, b = h = 0.13 m
Mass, m = 3.3 kg
Density = 8100 
So,


l = 0.024 m
Then for relativistic length contraction,







Therefore, the speed of the observer relative to the cube is 0.9833 c (in the units of c).
Lungs vacoules on if those 2
Answer:

Explanation:
We can find the resistance of the wire by using Ohm's law:

where
V is the voltage applied
R is the resistance
I is the current
In this problem, we know I = 6 A and V = 68 V, so we can re-arrange the equation to find the resistance of the wire:
