The pressure exerted by a fluid solely relies on the depth or height of the fluid, its density, and the gravitational constant. These three are related in the equation:
Pressure = density x g x height
In the problem, point A is within the block inside the tank. The water above the block is assumed to be 0.6 meters. This gives a point A pressure of:
P = 1000 kg/m^3 * 9.81 m/s^2 * 0.6 m = 5,886 Pa or 5.88KPa
consider the motion of projectile A in vertical direction :
v₀ = initial velocity of projectile A in vertical direction = 0 m/s (since the projectile was launched horizontally)
a = acceleration of the projectile = g = acceleration due to gravity = 9.8 m/s²
t = time of travel for projectile A = 3.0 seconds
Y = vertical displacement of projectile A = height of the cliff = h = ?
using the kinematics equation along the vertical direction as
Y = v₀ t + (0.5) a t²
h = (0) (3.0) + (0.5) (9.8) (3.0)²
h = 44.1 m
The correct answer is magnetic field, electric field, and charges.
Answer:
A) The net force
Explanation:
If two forces of equal strength act on an object in opposite directions, the forces will cancel, resulting in a net force of zero and no movement.
Answer:
Explanation:
Given that, .
R = 12 ohms
C = 500μf.
Time t =? When the charge reaches 99.99% of maximum
The charge on a RC circuit is given as
A discharging circuit
Q = Qo•exp(-t/RC)
Where RC is the time constant
τ = RC = 12 × 500 ×10^-6
τ = 0.006 sec
The maximum charge is Qo,
Therefore Q = 99.99% of Qo
Then, Q = 99.99/100 × Qo
Q = 0.9999Qo
So, substituting this into the equation above
Q = Qo•exp(-t/RC)
0.9999Qo = Qo•exp(-t / 0.006)
Divide both side by Qo
0.9999 = exp(-t / 0.006)
Take In of both sodes
In(0.9999) = In(exp(-t / 0.006))
-1 × 10^-4 = -t / 0.006
t = -1 × 10^-4 × - 0.006
t = 6 × 10^-7 second
So it will take 6 × 10^-7 a for charge to reached 99.99% of it's maximum charge