Answer:
(a) 0.345 T
(b) 0.389 T
Solution:
As per the question:
Hall emf, 
Magnetic Field, B = 0.10 T
Hall emf, 
Now,
Drift velocity, 

Now, the expression for the electric field is given by:
(1)
And

Thus eqn (1) becomes
where
d = distance
(2)
(a) When 

(b) When 

A proton in a particle accelerator is traveling at a speed of 0.99c has a speed magnitude of 2.97 x 10⁸ m/s.
<h3>What is speed of proton?</h3>
The speed of a proton is the rate at which a proton is moving through a given space.
The given speed of the proton is 0.99c
where;
<h3>What is speed of light?</h3>
The speed of light in vacuum, commonly denoted c, is a universal physical constant that is important in many areas of physics.
The value of speed of light in a vacuum is given as 3 x 10⁸ m/s.
The speed of the proton is calculated as follows;
v = 0.99 x 3 x 10⁸ m/s.
v = 2.97 x 10⁸ m/s.
Thus, a proton in a particle accelerator is traveling at a speed of 0.99c has a speed magnitude of 2.97 x 10⁸ m/s.
Learn more about speed of proton here: brainly.com/question/14663642
#SPJ1
A fixed container containing an ideal gas is heated. The pressure of the gas increases because the molecules move faster.
You can speed up the motion of the molecules in a gas by heating it. The pressure will rise and there will be greater impacts on the container's walls.
The container walls are pressed against by the combined force of the collisions. The energy you provide when you heat the gas makes the gas's particles more kinetically energetic and put more pressure on the container.
As the temperature rises, the pressure must as well since pressure is the force the particles per unit of area exert on the container.
Learn more about pressure and temperature relation here:-
brainly.com/question/1969683
#SPJ4
The solution for this problem is:
500 revolution per
minute = 8.33rev /s = 2π*8.33 rad /s = 52.36 rad /s
Angular velocity ω = 2π N
Angular acceleration α= (ω2 - ω1) /t
ω2 = 0
α = - ω1/t = -2π N /t
N = 500 rpm = 8.33 r p s.
α = -2π 8.33 /2.6 =- 20 rad/s^2
<span>A device for producing motive power from heat, such as a gasoline engine.</span>