Hi, I'm Jenny from ExperimentsDIYS and I'm here to help you with your math! :)
I am assuming that you need help with question #1 so we will proceed with that one.
Lets first divide 1,875 ÷ 9.
Using a calculator, this is equal to 208.333333333
We can simplify this number by rounding up.
208.33 would be your answer rounded.
The first digit in this quotient ( Which is the answer to a division problem) is using place value.
The decimal place value chart is attached.
The first digit will be in the hundreds place because it is on the left side of the decimal point.
We are ecstatic to help and if there are any more problems or if we got any answers wrong please tell us! Thank you <3
-ExperimentsDIYS
Answer:
and 
Step-by-step explanation:
sinB =
=
= 
tanC =
=
= 
Thus
sinB tanC =
×
( cancel b on numerator/ denominator )
= 
---------------------------------------------------------------------------
sinC =
=
= 
tanB =
=
= 
Thus
sinC tanB =
×
( cancel c on numerator/ denominator )
= 
Answer:
M = 5742π
Step-by-step explanation:
Given:-
- Find the mass of a solid with the density ( ρ ):
ρ ( r, θ , z ) = 1 + z / 81
- The solid is bounded by the planes:
0 ≤ z ≤ 81 - r^2
0 ≤ r ≤ 9
Find:-
Find the mass of the solid paraboloid
Solution:-
- The mass (M) of any solid body is given by the following triple integral formulation:

- We can write the above expression in cylindrical coordinates:
![M = \int\limits\int\limits_r\int\limits_z {r*p(r,theta,z)} \, dz.dr.dtheta \\\\M = \int\limits\int\limits_r\int\limits_z {r*[ 1 + \frac{z}{81}] } \, dz.dr.dtheta\\\\](https://tex.z-dn.net/?f=M%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%5Cint%5Climits_z%20%7Br%2Ap%28r%2Ctheta%2Cz%29%7D%20%5C%2C%20dz.dr.dtheta%20%5C%5C%5C%5CM%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%5Cint%5Climits_z%20%7Br%2A%5B%201%20%2B%20%5Cfrac%7Bz%7D%7B81%7D%5D%20%7D%20%5C%2C%20dz.dr.dtheta%5C%5C%5C%5C)
- Perform integration:
![M = \int\limits\int\limits_r{r*[ z + \frac{z^2}{162}] } \,|_0^8^1^-^r^2 dr.dtheta\\\\M = \int\limits\int\limits_r{r*[ 81-r^2 + \frac{(81-r^2)^2}{162}] } \, dr.dtheta\\\\M = \int\limits\int\limits_r{r*[ 81-r^2 + \frac{6561 -162r + r^2}{162}] } \, dr.dtheta\\\\M = \int\limits\int\limits_r{r*[ 81-r^2 + 40.5 -r +\frac{r^2}{162} ] } \, dr.dtheta\\\\M = \int\limits\int\limits_r{[ 121.5r-r^2 -\frac{161r^3}{162} ] } \, dr.dtheta\\\\](https://tex.z-dn.net/?f=M%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%7Br%2A%5B%20z%20%2B%20%5Cfrac%7Bz%5E2%7D%7B162%7D%5D%20%7D%20%5C%2C%7C_0%5E8%5E1%5E-%5Er%5E2%20dr.dtheta%5C%5C%5C%5CM%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%7Br%2A%5B%2081-r%5E2%20%2B%20%5Cfrac%7B%2881-r%5E2%29%5E2%7D%7B162%7D%5D%20%7D%20%5C%2C%20dr.dtheta%5C%5C%5C%5CM%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%7Br%2A%5B%2081-r%5E2%20%2B%20%5Cfrac%7B6561%20-162r%20%2B%20r%5E2%7D%7B162%7D%5D%20%7D%20%5C%2C%20dr.dtheta%5C%5C%5C%5CM%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%7Br%2A%5B%2081-r%5E2%20%2B%2040.5%20-r%20%2B%5Cfrac%7Br%5E2%7D%7B162%7D%20%5D%20%7D%20%5C%2C%20dr.dtheta%5C%5C%5C%5CM%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%7B%5B%20121.5r-r%5E2%20-%5Cfrac%7B161r%5E3%7D%7B162%7D%20%5D%20%7D%20%5C%2C%20dr.dtheta%5C%5C%5C%5C)
- The mass evaluated is M = 5742π
Answer:
The answer is 120 sq. ft.