The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
1 is hours and 2 is meters
Molarity can be defined as the number of moles of substance dissolved in 1 L of solution.
In the given question ,
number of LiOH moles - 1.495 mol
Dissolved volume - 750 mL
molarity is calculated for 1 L = 1000 mL
In 750 mL - 1.495 mol of LiOH is dissolved
Therefore in 1000 mL - 1.495 mol / 750 mL x 1000 = 1.99 mol
We can see that 2 moles of The no react with 1 mole of O2 using this equation. 4.8 L NO x 1 L O2 / 2 L NO = 2.4 L of O2 are needed at constant pressure and temperature.
What is an example of pressure?
One can see a simple illustration of pressure by using a knife against a few fruit. If you press the flat side of the knife against the fruit, the top won't be cut. The force is spread more than a wide area (low pressure).
What are different types of pressure?
The physical pressure exerted to an object is referred to as pressure. Per unit area, a parallel force is applied to the surface of the objects. F/A (Force per Area) is the basic formula for pressure.
To know more about pressure visit:
brainly.com/question/12971272
#SPJ4
Answer:
Mg
Explanation:
Mg + Cu2+ — Mg2+ + Cu
Magnesium is oxidized because its oxidation state increased from 0 to +2 while Cu is reduced because its oxidation state decreased from +2 to 0.
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
<em>Consider the following reactions.
</em>
4KI + 2CuCl₂ → 2CuI + I₂ + 4KCl
the oxidation state of copper is changed from +2 to +1 so copper get reduced.
CO + H₂O → CO₂ + H₂
the oxidation state of carbon is +2 on reactant side and on product side it becomes +4 so carbon get oxidized.
Na₂CO₃ + H₃PO₄ → Na₂HPO₄ + CO₂ + H₂O
The oxidation state of carbon on reactant side is +4. while on product side is also +4 so it neither oxidized nor reduced.
H₂S + 2NaOH → Na₂S + 2H₂O
The oxidation sate of sulfur is -2 on reactant side and in product side it is also -2 so it neither oxidized nor reduced.
Oxidizing agents:
Oxidizing agents oxidize the other elements and itself gets reduced.
Reducing agents:
Reducing agents reduced the other element are it self gets oxidized.