Answer:
-2
Step-by-step explanation:
line crosses the y- coordinate (0,-2)
First, let's re-arrange to slope-intercept form.
x + 8y = 27
Subtract 'x' to both sides:
8y = -x + 27
Divide 8 to both sides:
y = -1/8x + 3.375
So the slope of this line is -1/8, to find the slope that is perpendicular to this, we multiply it by -1 and flip it. -1/8 * -1 = 1/8, flipping it will give us 8/1 or 8.
So the slope of the perpendicular line will be 8.
Now we can plug this into point-slope form along with the point given.
y - y1 = m(x - x1)
y - 5 = 8(x + 5)
y - 5 = 8x + 40
y = 8x + 45
Answer:
x=21°. :Angles subtended by the same arc
y=42°. :180-(117+21),angles subtended by the same arc
Using the binomial distribution, it is found that there is a 0.7215 = 72.15% probability that between 10 and 15, inclusive, accidents involved drivers who were intoxicated.
For each fatality, there are only two possible outcomes, either it involved an intoxicated driver, or it did not. The probability of a fatality involving an intoxicated driver is independent of any other fatality, which means that the binomial distribution is used to solve this question.
Binomial probability distribution
The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- 70% of fatalities involve an intoxicated driver, hence
.
- A sample of 15 fatalities is taken, hence
.
The probability is:

Hence







Then:

0.7215 = 72.15% probability that between 10 and 15, inclusive, accidents involved drivers who were intoxicated.
A similar problem is given at brainly.com/question/24863377