Answer:
530.087 trust me
Step-by-step explanation:
Megan:
x to the one third power =

<span>x to the one twelfth power = </span>

<span>The quantity of x to the one third power, over x to the one twelfth power is:
</span>

<span>
Since </span>

then

Now, just subtract exponents:
1/3 - 1/12 = 4/12 - 1/12 = 3/12 = 1/4

Julie:
x times x to the second times x to the fifth = x * x² * x⁵
<span>The thirty second root of the quantity of x times x to the second times x to the fifth is
</span>
![\sqrt[32]{x* x^{2} * x^{5} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B32%5D%7Bx%2A%20x%5E%7B2%7D%20%2A%20x%5E%7B5%7D%20%7D%20)
<span>
Since </span>

Then
![\sqrt[32]{x* x^{2} * x^{5} }= \sqrt[32]{ x^{1+2+5} } =\sqrt[32]{ x^{8} }](https://tex.z-dn.net/?f=%5Csqrt%5B32%5D%7Bx%2A%20x%5E%7B2%7D%20%2A%20x%5E%7B5%7D%20%7D%3D%20%5Csqrt%5B32%5D%7B%20x%5E%7B1%2B2%2B5%7D%20%7D%20%3D%5Csqrt%5B32%5D%7B%20x%5E%7B8%7D%20%7D)
Since
![\sqrt[n]{x^{m}} = x^{m/n} }](https://tex.z-dn.net/?f=%20%5Csqrt%5Bn%5D%7Bx%5E%7Bm%7D%7D%20%3D%20x%5E%7Bm%2Fn%7D%20%7D%20)
Then
![\sqrt[32]{ x^{8} }= x^{8/32} = x^{1/4}](https://tex.z-dn.net/?f=%5Csqrt%5B32%5D%7B%20x%5E%7B8%7D%20%7D%3D%20x%5E%7B8%2F32%7D%20%3D%20x%5E%7B1%2F4%7D%20)
Since both Megan and Julie got the same result, it can be concluded that their expressions are equivalent.
Answer:
<h2>2 x 2</h2>
Step-by-step explanation:
Dimensions: m x n
m = number of rows
n = number of columns
When multiplying two matrices:
m x n * n x k = m x k
MATIX 1:
m = number of rows
n = number of columns
MATRIX 2:
n = number of rows
k = number of columns
RESULTING MATIX:
m = number of rows
k = number of columns
2 x 3 * 3 x 2 = 2 x 2
Answer:
(5a−3)^2
Step-by-step explanation:
25a^2 - 30a + 9
Factor the expression by grouping. First, the expression needs to be rewritten as 25a^2+pa+qa+9. To find p and q, set up a system to be solved.
p+q=−30
pq=25×9=225
Since pq is positive, p and q have the same sign. Since p+q is negative, p and q are both negative. List all such integer pairs that give product 225.
−1,−225
−3,−75
−5,−45
−9,−25
−15,−15
Calculate the sum for each pair.
−1−225=−226
−3−75=−78
−5−45=−50
−9−25=−34
−15−15=−30
The solution is the pair that gives sum −30.
p=−15
q=−15
Rewrite 25a^2 - 30a + 9 as (25a^2−15a)+(−15a+9).
(25a^2−15a)+(−15a+9)
Factor out 5a in the first and −3 in the second group.
5a(5a−3)−3(5a−3)
Factor out common term 5a−3 by using distributive property.
(5a−3)(5a−3)
Rewrite as a binomial square.
(5a−3)^2
Answer:
that will be .... x=2,y=1 so that will be (2,1)