Answer: The answer is 381.85 feet.
Step-by-step explanation: Given that a window is 20 feet above the ground. From there, the angle of elevation to the top of a building across the street is 78°, and the angle of depression to the base of the same building is 15°. We are to calculate the height of the building across the street.
This situation is framed very nicely in the attached figure, where
BG = 20 feet, ∠AWB = 78°, ∠WAB = WBG = 15° and AH = height of the bulding across the street = ?
From the right-angled triangle WGB, we have

and from the right-angled triangle WAB, we have'

Therefore, AH = AB + BH = h + GB = 361.85+20 = 381.85 feet.
Thus, the height of the building across the street is 381.85 feet.
Answer:
D
Step-by-step explanation:
-12/6= -2
x^10/x^8= x^2
y^3/y= y^2
Answer:
Weights of at least 340.1 are in the highest 20%.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

a. Highest 20 percent
At least X
100-20 = 80
So X is the 80th percentile, which is X when Z has a pvalue of 0.8. So X when Z = 0.842.




Weights of at least 340.1 are in the highest 20%.