Answer:
2^9 or 512
Step-by-step explanation:
Answer:
The probability is 0.0052
Step-by-step explanation:
Let's call A the event that the four cards are aces, B the event that at least three are aces. So, the probability P(A/B) that all four are aces given that at least three are aces is calculated as:
P(A/B) = P(A∩B)/P(B)
The probability P(B) that at least three are aces is the sum of the following probabilities:
- The four card are aces: This is one hand from the 270,725 differents sets of four cards, so the probability is 1/270,725
- There are exactly 3 aces: we need to calculated how many hands have exactly 3 aces, so we are going to calculate de number of combinations or ways in which we can select k elements from a group of n elements. This can be calculated as:

So, the number of ways to select exactly 3 aces is:

Because we are going to select 3 aces from the 4 in the poker deck and we are going to select 1 card from the 48 that aren't aces. So the probability in this case is 192/270,725
Then, the probability P(B) that at least three are aces is:

On the other hand the probability P(A∩B) that the four cards are aces and at least three are aces is equal to the probability that the four card are aces, so:
P(A∩B) = 1/270,725
Finally, the probability P(A/B) that all four are aces given that at least three are aces is:

320 because you added the two numbers to get the total.
<span>A) x+y+z=23
B) y+z=14
C) z=9
Since z = 9 then
A) x + y = 14
B) y = 5
A) </span><span><span>x + y+ z=23</span>
A) x + 5 + 9 = 23
A) x = 9
</span>
Answer
a. 28˚
b. 76˚
c. 104˚
d. 56˚
Step-by-step explanation
Given,
∠BCE=28° ∠ACD=31° & line AB=AC .
According To the Question,
- a. the angle between a chord and a tangent through one of the end points of the chord is equal to the angle in the alternate segment.(Alternate Segment Theorem) Thus, ∠BAC=28°
- b. We Know The Sum Of All Angles in a triangle is 180˚, 180°-∠CAB(28°)=152° and ΔABC is an isosceles triangle, So 152°/2=76˚
thus , ∠ABC=76° .
- c. We know the Sum of all angles in a triangle is 180° and opposite angles in a cyclic quadrilateral(ABCD) add up to 180˚,
Thus, ∠ACD + ∠ACB = 31° + 76° ⇔ 107°
Now, ∠DCB + ∠DAB = 180°(Cyclic Quadrilateral opposite angle)
∠DAB = 180° - 107° ⇔ 73°
& We Know, ∠DAC+∠CAB=∠DAB ⇔ ∠DAC = 73° - 28° ⇔ 45°
Now, In Triangle ADC Sum of angles in a triangle is 180°
∠ADC = 180° - (31° + 45°) ⇔ 104˚
- d. ∠COB = 28°×2 ⇔ 56˚ , because With the Same Arc(CB) The Angle at circumference are half of the angle at the centre
For Diagram, Please Find in Attachment