1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nana76 [90]
3 years ago
12

Medium sodas cost $1.25 and hot dogs cost $2.50.

Mathematics
2 answers:
Llana [10]3 years ago
8 0

Answer:

<h2>They can buy 16 sodas.</h2>

Step-by-step explanation:

We know that each soda costs $15. So, if they have $20 to buy sodas, we can find the amount of sodas by applying the rule of three:

So, if one cost $15, how many soda could they but with $20?

x=$20\frac{1soda}{$1.25} =16(sodas)

<h3>If we make a table would be like this:</h3>

Amount of Soda       Cost ($)

1                                  1.25

2                                 2.50

3                                 3.75

4                                 5

5                                 6.25

6                                 7.50

7                                 8.75

8                                 10

9                                 11.25

10                                12.50

11                                 13.75

12                                15

13                                16.25

14                                17.50

15                                18.75

16                                20

<h3><em></em></h3><h3><em>Therefore, with $20 they can buy 16 sodas.</em></h3>
Sindrei [870]3 years ago
6 0
She could buy 16 sodas
You might be interested in
Derive these identities using the addition or subtraction formulas for sine or cosine: sinacosb=(sin(a+b)+sin(a-b))/2
Sergeu [11.5K]

Answer:

The work is in the explanation.

Step-by-step explanation:

The sine addition identity is:

\sin(a+b)=\sin(a)\cos(b)+\cos(a)\sin(b).

The sine difference identity is:

\sin(a-b)=\sin(a)\cos(b)-\cos(a)\sin(a).

The cosine addition identity is:

\cos(a+b)=\cos(a)\cos(b)-\sin(a)\sin(b).

The cosine difference identity is:

\cos(a-b)=\cos(a)\cos(b)+\sin(a)\sin(b).

We need to find a way to put some or all of these together to get:

\sin(a)\cos(b)=\frac{\sin(a+b)+\sin(a-b)}{2}.

So I do notice on the right hand side the \sin(a+b) and the \sin(a-b).

Let's start there then.

There is a plus sign in between them so let's add those together:

\sin(a+b)+\sin(a-b)

=[\sin(a+b)]+[\sin(a-b)]

=[\sin(a)\cos(b)+\cos(a)\sin(b)]+[\sin(a)\cos(b)-\cos(a)\sin(b)]

There are two pairs of like terms. I will gather them together so you can see it more clearly:

=[\sin(a)\cos(b)+\sin(a)\cos(b)]+[\cos(a)\sin(b)-\cos(a)\sin(b)]

=2\sin(a)\cos(b)+0

=2\sin(a)\cos(b)

So this implies:

\sin(a+b)+\sin(a-b)=2\sin(a)\cos(b)

Divide both sides by 2:

\frac{\sin(a+b)+\sin(a-b)}{2}=\sin(a)\cos(b)

By the symmetric property we can write:

\sin(a)\cos(b)=\frac{\sin(a+b)+\sin(a-b)}{2}

3 0
3 years ago
The top and bottom margins of a poster are each 15 cm and the side margins are each 10 cm. If the area of printed material on th
12345 [234]

Answer:

the dimension of the poster = 90 cm length and 60 cm  width i.e 90 cm by 60 cm.

Step-by-step explanation:

From the given question.

Let p be the length of the of the printed material

Let q be the width of the of the printed material

Therefore pq = 2400 cm ²

q = \dfrac{2400 \ cm^2}{p}

To find the dimensions of the poster; we have:

the length of the poster to be p+30 and the width to be \dfrac{2400 \ cm^2}{p} + 20

The area of the printed material can now be:  A = (p+30)(\dfrac{2400 }{p} + 20)

=2400 +20 p +\dfrac{72000}{p}+600

Let differentiate with respect to p; we have

\dfrac{dA}{dp}= 20 - \dfrac{72000}{p^3}

Also;

\dfrac{d^2A}{dp^2}= \dfrac{144000}{p^3}

For the smallest area \dfrac{dA}{dp }=0

20 - \dfrac{72000}{p^2}=0

p^2 = \dfrac{72000}{20}

p² = 3600

p =√3600

p = 60

Since p = 60 ; replace p = 60 in the expression  q = \dfrac{2400 \ cm^2}{p}   to solve for q;

q = \dfrac{2400 \ cm^2}{p}

q = \dfrac{2400 \ cm^2}{60}

q = 40

Thus; the printed material has the length of 60 cm and the width of 40cm

the length of the poster = p+30 = 60 +30 = 90 cm

the width of the poster = \dfrac{2400 \ cm^2}{p} + 20 = \dfrac{2400 \ cm^2}{60} + 20  = 40 + 20 = 60

Hence; the dimension of the poster = 90 cm length and 60 cm  width i.e 90 cm by 60 cm.

4 0
3 years ago
Don’t understand again?
Makovka662 [10]

<u><em>10 2/7 ÷ 3/14</em></u>              First Write The Equation

<u><em>72/7 ÷ 3/14</em></u>                Use KCF which is Keep, Change, and Flip

<u><em>1008/21</em></u>                      Use Division Of Equality

<u><em>Answer: 48</em></u>

8 0
3 years ago
Solve the rational equation: x/x+1 = 2/x+1
Tju [1.3M]

Answer:

x = 2

Step-by-step explanation:

\frac{x}{x+1} =\frac{2}{x+1}

x ≠ 0

x ≠ - 2

x ≠ - 1

\frac{x}{x+1}(x+1) =\frac{2}{x+1}(x+1)

x = 2

6 0
2 years ago
35POINTS PLZ HELP FAST
meriva

Answer:

Step-by-step explanation:

16.76FT^3

3 0
2 years ago
Other questions:
  • Simplify 4 over quantity 2 plus 7 i
    12·2 answers
  • the base of a rectangle is three times as long as the height. of the perimeter is 64, what is the area of the rectangle
    10·1 answer
  • Suppose a sheet of 100 stamps is 0.99 millimeters thick. If a stack of sheets contains 10,000 stamps, how many millimeters thick
    11·1 answer
  • 5 •p• 3= 5• 3 •p <br> Pls help me
    5·1 answer
  • Please help find the value of x
    7·1 answer
  • PLEAZE HELP WILL MARK BRAINLIEST Jenny earned a 77 on her most recent test. Jenny’s score is no less than 5 points greater than
    12·1 answer
  • A chocolate bar measures 50 mm wide, 90 mm long, and mm high. Will’s Wrapping Company is making a wrapper to cover the chocolate
    9·1 answer
  • Find the value x<br>this is a test I need it immediately asap​
    11·2 answers
  • PLEASE HURRY : A container is 40% filled with liquid. The container holds 1560 gallons of liquid. How many gallons of liquid are
    14·2 answers
  • Need help ASAP
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!