In linear programming the constraints and the objective function are composed of linear decision variables
The schedule that minimize the cost is to have;
<u>8 day-shift</u><u> workers and </u><u>6 night shift </u><u>workers</u>
The given parameter are;
The overlapping shift worked are;
Noon to 8 P.M.
4. P.M. to midnight
![\begin{array}{|l|c|c|c|} \mathbf{Time}& \mathbf{12 \ noon \ -\ 4 \ p.m.}& \mathbf{4 \ p.m. \ -\ 8 \ p.m. }& \mathbf{ 8 \ p.m. \ - midnight}\\Employee \ needed&At \ least \ 5&At \ least \ 14 &6\\Hourly \ rate& \$5.50 & \$7.50 & \$7.50 \end{array}\right]](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7B%7Cl%7Cc%7Cc%7Cc%7C%7D%20%5Cmathbf%7BTime%7D%26%20%5Cmathbf%7B12%20%5C%20noon%20%5C%20%20-%5C%204%20%5C%20p.m.%7D%26%20%5Cmathbf%7B4%20%5C%20p.m.%20%5C%20%20-%5C%208%20%5C%20p.m.%20%7D%26%20%5Cmathbf%7B%208%20%5C%20p.m.%20%5C%20-%20midnight%7D%5C%5CEmployee%20%5C%20needed%26At%20%5C%20least%20%5C%205%26At%20%5C%20least%20%5C%2014%20%266%5C%5CHourly%20%5C%20rate%26%20%5C%245.50%20%26%20%5C%247.50%20%26%20%5C%247.50%20%5Cend%7Barray%7D%5Cright%5D)
Let <em>x </em> represent the number of day-shift workers required, and let <em>y</em> represent the number of night shift workers required, we have;
x + y ≥ 14
y = 6
x ≥ 5
By plugging in the value of <em>y</em>, gives;
x + 6 ≥ 14
x ≥ 14 - 6 = 8
x ≥ 8
Therefore, the solution for minimal cost that satisfies the constraints is x = 8
We get;
The schedule to minimize the cost is; The number of <u>day-shift workers</u> required, x = <u>8</u>, and the number of <u>night shift workers</u> required, <em>y</em> = <u>6</u>
<u />
Learn more about optimization and linear programming here:
brainly.com/question/13610156
brainly.com/question/20022290