Answer:
the answer is 4w-14=14 w=7
Answer: 0.31 or 31%
Let A be the event that the disease is present in a particular person
Let B be the event that a person tests positive for the disease
The problem asks to find P(A|B), where
P(A|B) = P(B|A)*P(A) / P(B) = (P(B|A)*P(A)) / (P(B|A)*P(A) + P(B|~A)*P(~A))
In other words, the problem asks for the probability that a positive test result will be a true positive.
P(B|A) = 1-0.02 = 0.98 (person tests positive given that they have the disease)
P(A) = 0.009 (probability the disease is present in any particular person)
P(B|~A) = 0.02 (probability a person tests positive given they do not have the disease)
P(~A) = 1-0.009 = 0.991 (probability a particular person does not have the disease)
P(A|B) = (0.98*0.009) / (0.98*0.009 + 0.02*0.991)
= 0.00882 / 0.02864 = 0.30796
*round however you need to but i am leaving it at 0.31 or 31%*
If you found this helpful please mark brainliest
Answer:
4.3 g
Step-by-step explanation:
An outlier is a data point that strays far from the average of the group.
The other data points are all close to 3.
See how 4.3 is way farther from 3 than all the rest?
Hi there!
We are looking for perpendicular angles, which means the angle between the streets is 90 degrees. So, each time we need to find the street that intersects the given street with a 90 degree angle.
On this map, Oxford Street is perpendicular to Waterloo St., and Rosewood Street is perpendicular to Oak St..
The answers are (in correct order): Waterloo St. and Oak St..
~ Hope this helps you!