Answer:
Step-by-step explanation:
first subtract 125-180=X you will get X=55 so then add X+X+y=180 which x+x+y= is actually 55+55+y=180 but don't add the y just yet add 55+55 then you will get 110+y=180 so then flip it backwards and do y=180-110 and your anwser is y=70
Answer:
x ≈ 20.42, y ≈ 11.71
Step-by-step explanation:
Using the cosine ratio on the right triangle on the right, that is
cos20° =
= 
Multiply both sides by y
y × cos20° = 11 ( divide both sides by cos20° )
y =
≈ 11.71
Using the sine ratio on the right triangle on the left, that is
sin35° =
=
= 
Multiply both sides by x
x × sin35° = 11.71 ( divide both sides by sin35° )
x =
≈ 20.42
Answer:
x=-4 y=-1
Step-by-step explanation:
Let's solve your system by substitution.
−3x−8y=20;y=5x+19
Rewrite equations:
y=5x+19;−3x−8y=20
Step: Solve y=5x+19for y:
y=5x+19
Step: Substitute5x+19foryin−3x−8y=20:
−3x−8y=20
−3x−8(5x+19)=20
−43x−152=20(Simplify both sides of the equation)
−43x−152+152=20+152(Add 152 to both sides)
−43x=172
−43x
−43
=
172
−43
(Divide both sides by -43)
x=−4
Step: Substitute−4forxiny=5x+19:
y=5x+19
y=(5)(−4)+19
y=−1(Simplify both sides of the equation)
Answer:
x=−4 and y=−1
Answer:
9
Step-by-step explanation:
Horizontal line from 4 to -5.
Answer:
Option D. ![\sqrt[4]{\frac{3x^{2}}{2y}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B3x%5E%7B2%7D%7D%7B2y%7D%7D)
Step-by-step explanation:
![\sqrt[4]{\frac{24x^{6}y}{128x^{4}y^{5}}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B24x%5E%7B6%7Dy%7D%7B128x%5E%7B4%7Dy%5E%7B5%7D%7D%7D)
![\sqrt[4]{(\frac{24}{128})\times (\frac{x^{6}}{x^{4}})\times (\frac{y}{y^{5}})}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%28%5Cfrac%7B24%7D%7B128%7D%29%5Ctimes%20%28%5Cfrac%7Bx%5E%7B6%7D%7D%7Bx%5E%7B4%7D%7D%29%5Ctimes%20%28%5Cfrac%7By%7D%7By%5E%7B5%7D%7D%29%7D)
= ![\sqrt[4]{(\frac{3}{16})\times {(x)^{6-4}}\times{(y)^{1-5}}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%28%5Cfrac%7B3%7D%7B16%7D%29%5Ctimes%20%7B%28x%29%5E%7B6-4%7D%7D%5Ctimes%7B%28y%29%5E%7B1-5%7D%7D%7D)
= ![\sqrt[4]{(\frac{3}{16})\times x^{2}y^{-4}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%28%5Cfrac%7B3%7D%7B16%7D%29%5Ctimes%20x%5E%7B2%7Dy%5E%7B-4%7D%7D)
= ![\sqrt[4]{\frac{3}{(2)^{4}}\times x\times y^{-4}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B3%7D%7B%282%29%5E%7B4%7D%7D%5Ctimes%20x%5Ctimes%20y%5E%7B-4%7D%7D)
= ![\sqrt[4]{(3\times x^{2)\times (\frac{y^{-1}}{2})^{4}}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%283%5Ctimes%20x%5E%7B2%29%5Ctimes%20%28%5Cfrac%7By%5E%7B-1%7D%7D%7B2%7D%29%5E%7B4%7D%7D%7D)
= ![\frac{y^{-1}}{2}\sqrt[4]{3x^{2}}](https://tex.z-dn.net/?f=%5Cfrac%7By%5E%7B-1%7D%7D%7B2%7D%5Csqrt%5B4%5D%7B3x%5E%7B2%7D%7D)
= ![\sqrt[4]{\frac{3x^{2}}{2y}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B3x%5E%7B2%7D%7D%7B2y%7D%7D)
Option D.
is the correct answer.