1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
V125BC [204]
3 years ago
8

Need answer ASAP!! Jessica has twice as many CDs as Fran, and Fran has five more than three times as many CDs as Alyssa. Let c =

number of CDs Alyssa has. In terms of c,how many CDs does Jessica have?
Mathematics
1 answer:
blsea [12.9K]3 years ago
6 0

Answer:

10 + 6C

Step-by-step explanation:

C = the number of CDs Alyssa has

Alyssa has C CDs

Fran has five more than three times as many CDs as Alyssa.

Fran has 5 + (3 * C)

Fran has (5 + 3C) CDs

Jessica has twice as many CDs as Fran

Jessica has 2 * (5 + 3C) CDs

Jessica has 10 + 6C CDs

You might be interested in
Help, please! 10 points to solve.
sineoko [7]
The answer is B, 7.6-(-1.7)=9.3
6 0
3 years ago
Graphing polynomial functions?
Leni [432]

NOTES:

Degree: the largest exponent in the polynomial

End Behavior:

  • Coefficient is POSITIVE, then right side goes to POSITIVE infinity
  • Coefficient is NEGATIVE, then right side goes to NEGATIVE infinity
  • Degree is EVEN, then left side is SAME direction as right side
  • Degree is ODD, then left side is OPPOSITE direction as right side

Multiplicity (M): the exponent of the zero. <em>e.g. (x - 3)²  has a multiplicity of 2</em>

Relative max/min: the y-value of the vertices.  

  1. Find the axis of symmetry <em>(the midpoint of two neighboring zeros)</em>
  2. Plug the x-value from 1 (above) into the given equation to find the y-value. <em>(which is the max/min)</em>
  3. Repeat 1 and 2 (above) for each pair of neighboring zeros.

Rate of Change: slope between the two given points.

********************************************************************************************

1. f(x) = (x-1)²(x + 6)

a) Degree = 3

b) end behavior:

  • Coefficient is positive so right side goes to positive infinity
  • Degree is odd so left side goes to negative infinity

c) (x - 1)²(x + 6) = 0

   x - 1 = 0                     x + 6 = 0

       x = 1 (M=2)                   x = -6 (M=1)

d) The midpoint between 1 and -6 is -3.5, so axis of symmetry is at x = -3.5

y = (-3.5 - 1)²(-3.5 + 6)

  =  (-4.5)²(2.5)

  = 50.625

50.625 is the relative max

e) see attachment #1

f) The interval at which the graph increases is: (-∞, -3.5)U(1, ∞)

g) The interval at which the graph decreases is: (-3.5, 1)

h) f(-1) = (-1 - 1)²(-1 + 6)

          = (-2)²(5)

          = 20

    f(0) = (0 - 1)²(0 + 6)

          = (-1)²(6)

          = 6

Find the slope between (-1, 20) and (0, 6)

m = \frac{20-6}{-1-0}

   = \frac{14}{-1}

   = -14

********************************************************************************************

2.    y = x³+3x²-10x

         = x(x² + 3x - 10)      

         = x(x + 5)(x - 2)

a) Degree = 3

b) end behavior:

   Coefficient is positive so right side goes to positive infinity

   Degree is odd so left side goes to negative infinity

c) x(x + 5)(x - 2) = 0

   x = 0                     x + 5 = 0                     x - 2 = 0

   x = 0 (M=1)                   x = -5 (M=1)                x = 2 (M=1)

d) The midpoint between -5 and 0 is -2.5, so axis of symmetry is at x = -2.5

y = -2.5(-2.5 + 5)(-2.5 - 2)

  =  -2.5(2.5)(-4.5)

  = 28.125

28.125 is the relative max

The midpoint between 0 and 2 is 1, so axis of symmetry is at x = 1

y = 1(1 + 5)(1 - 2)

  =  1(6)(-1)

  = -6

-6 is the relative min

e) see attachment #2

f) The interval at which the graph increases is: (-∞, -2.5)U(1, ∞)

g) The interval at which the graph decreases is: (-2.5, 1)

h) f(-1) = -1(-1 + 5)(-1 - 2)

********************************************************************************************

3. y = -x(x + 2)(x - 7)(x - 3)

a) Degree = 4

b) end behavior:

   Coefficient is negative so right side goes to negative infinity

   Degree is even so left side goes to negative infinity

c)  -x(x + 2)(x - 7)(x - 3) = 0

  -x = 0                     x + 2 = 0                     x - 7 = 0             x - 3 = 0

   x = 0 (M=1)                 x = -2 (M=1)                x = 7 (M=1)          x = 3 (M=1)

d) The midpoint between -2 and 0 is -1, so axis of symmetry is at x = -1

y = -(-1)(-1 + 2)(-1 - 7)(-1 - 3)

  =  1(1)(-8)(-4)

  = 32

32 is a relative max

The midpoint between 0 and 3 is 1.5, so axis of symmetry is at x = 1.5

y = -(1.5)(1.5 + 2)(1.5 - 7)(1.5 - 3)

  =  -1.5(3.5)(-5.5)(-1.5)

  = -43.3125

-43.3125 is the relative min

The midpoint between 3 and 7 is 5, so axis of symmetry is at x = 5

y = -(5)(5 + 2)(5 - 7)(5 - 3)

  =  -5(7)(-2)(2)

  = 140

140 is the relative max

e) see attachment #3

f) The interval at which the graph increases is: (-∞, -1)U(1.5, 5)

g) The interval at which the graph decreases is: (-1, 1.5)U(5, ∞)

h) f(-1) = -(-1)(-1 + 2)(-1 - 7)(-1 - 3)

          = 1(1)(-8)(-4)

          = 32

    f(0) = -(0)(0 + 2)(0 - 7)(0 - 3)

          = 0

Find the slope between (-1, 32) and (0, 0)

m = \frac{32-0}{-1-0}

   = \frac{32}{-1}

   = -32



5 0
3 years ago
Garden A has 9 more currant bushes than Garden B. If 3 currant bushes are transplanted from Garden B to Garden A, then Garden A
marusya05 [52]

Answer:

42

Step-by-step explanation:

Let x = the original number of bushes in garden A

Let x-9 = the original number of bushes in garden B

x-9-3=x-12 = bushes in garden B after transplanting 3

x+3 = bushes in garden A after transplanting 3

x+3=1.5(x-12)

x+3=1.5x-18

0.5x=21

x=42

There were 42 current bushes in garden A

3 0
3 years ago
Read 2 more answers
Write a quadratic function with zeroes 0 and 8.
Jlenok [28]

Answer:

x^2-8x=0

Step-by-step explanation:

the quadratic function should be as follows:

x^2-8x=0

Now let's confirm that the zeros of the function are 0 and 8

x^2-8x=0=x(x-8)=0

Therefore we can see that if x = 0

0^2*8*0=0\\0=0

the equation is fulfilled

And we also have (x-8)

for this expresion to be equal to zero:

x-8=0\\x=8

thus, if x = 8

8^2-8*8=0\\64-64=0\\0=0

the equation is also fulfilled

The zeros of the quadratic function x^2-8x=0 are 0 and 8.

3 0
3 years ago
Determine, to one decimal place, the length, width &amp; height of the rectangular prism that would have the greatest volume, wi
Leya [2.2K]

Answer:

The length = The width = The height  ≈ 5.8 cm

Step-by-step explanation:

The volume of a rectangular pyramid, V = l × w × h

The surface area of the pyramid = 2 × l × h + 2 × w × h + 2 × l × w = 200

∴  l × h + w × h + l × w = 200/2 = 100

We have that the maximum volume is given when the length, width, and height are equal and one length is not a fraction of the other. Therefore, we get;

At maximum volume, l = w = h

∴ l × h + w × h + l × w = 3·l² = 100

l² = 100/3

l = 10/√3

Therefore, the volume, v = l³ = (10/√3)³

The length = The width = The height = 10/√3 cm ≈ 5.8 cm

7 0
3 years ago
Other questions:
  • What is the expression in radical form? (3x^2)^2/3
    11·2 answers
  • Garth collects postcards from around the world and decides to organize them. He puts them into an album that holds 480 postcards
    11·2 answers
  • How to turn 0.07 with the repeating bar on the 7 into a fraction?
    15·1 answer
  • Given congruent triangles name the corresponding sides and corresponding angles
    5·1 answer
  • Braden and jordan are gathering data on a growth rate of a certain new hybrid seed they spilled coffee on the keyboard and destr
    5·1 answer
  • Triangle JKL is isosceles. The measure of angle J is 72° and the measure of angle K is 36°. Which statement describes angle L?
    15·2 answers
  • What's 15⁄45 written as a fraction in simplest form?
    11·1 answer
  • What is the equation in slope-intercept form?
    6·2 answers
  • Kim buys a dress for $65 and some shirts for $15 each. Linda buys some shoes for $50 and some shirts for $20. If the girls spend
    6·1 answer
  • Express sin S as a fraction in simplest terms. R S​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!