In most compartment fires, the energy release in fire is directly proportional to the amount of oxygen available for combustion.
Answer: Option B
<u>Explanation:</u>
A fire is the chemical outcome of energy generated by the heat. So, this heat is generating fire due to friction between the heating source with igniting elements. And to increase the chain reaction of fire leading to combustion or fire require oxygen. So, the amount of oxygen will lead to the production of fire. Thus, the energy released by fire will be equal to the amount of oxygen available for combustion.
If there is no oxygen, then the fire will get succumbed. The fire consumes the oxygen present to increase the pace and spread of fire. So the consumed oxygen utilized for converting the simple fire to combustion will be equal to the release of energy in fire. Thus, energy released in fire is directly proportional to the amount of oxygen available for combustion.
E is correct because net force in the forward direction is greater
Rutherford tested Thomson'shypothesis by devising his "gold foil" experiment. Rutherford was forced to discard the Plum Pudding modeland reasoned that the only way the alpha particles could be deflected backwards was if most of the mass in an atom was concentrated in a nucleus.
The force on the ship is more than a car
Answer:
A) 667 J
B) 381.4 J
C) 0 J
D) 245.4 J
E) 40.2J
F) 2 m/s
Explanation:
Let g = 9.81 m/s2
A) The work done on the suitcase is the product of the force applied and the distance travelled:
w = Fs = 145 * 4.6 = 667 J
B) The work done by gravitational force the dot product between the gravity vector and the distance vector
C) As the normal force vector is perpendicular to the distance vector, the work done by the normal force is 0
D) The work done on the suitcase by friction force is the product of the force applied and the distance travelled, whereas friction force is the product of normal force and coefficient
E) The total workdone on the suite case would be the pulling work subtracted by gravity work and friction work
F) As the suit case has 0 kinetic and potential energy at the bottom, and the total work done is converted to kinetic energy at 4.6 m along the ramp, we can conclude that: