Answer:
0.9 N
Explanation:
The force exerted on an object is related to its change in momentum by:

where
F is the force exerted
is the change in momentum
is the time interval
The change in momentum can be rewritten as

where
m is the mass
u is the initial velocity
v is the final velocity
So the formula can be rewritten as

In this problem we have:
is the mass rate
is the initial velocity
is the final velocity
Therefore, the force exerted by the hail on the roof is:

Answer:
Generally speaking, as the human population grows, our consumption of natural resources increases. More humans consume more freshwater, more land, more clothing, etc. ... For example, natural gas plants have become increasingly more efficient, thus humans are able to obtain more energy out of the same amount of gas.
Rapid population growth is detrimental to achieving economic and social progress and to sustainable management of the natural resource base. But there remains a sizeable gap between the private and social interest in fertility reduction, and this gap needs to be narrowed.
Answer:
A sloping surface separating air masses that differ in temperature and moisture content is called a front.
The frequency of a wave increases when the energy increases
Given:
ρ = 13.6 x 10³ kg/m³, density of mercury
W = 6.0 N, weight of the mercury sample
g = 9.81 m/s², acceleration due to gravity.
Let V = the volume of the sample.
Then
W = ρVg
or
V = W/(ρg)
= (6.0 N)/[(13.6 x 10³ kg/m³)*(9.81 m/s²)]
= 4.4972 x 10⁻⁵ m³
Answer: The volume is 44.972 x 10⁻⁶ m³