Answer:
x = 7
Step-by-step explanation:
When 2 secants are drawn from an external point to a circle.
The product of the external part and the entire secant of one secant is equal to the product of the external part and the entire secant of the other secant, that is
5(5 + x) = 6(6 + 4) ← distribute and simplify both sides
25 + 5x = 6 × 10
25 + 5x = 60 ( subtract 25 from both sides )
5x = 35 ( divide both sides by 5 )
x = 7
Answer: The loser's card shows 6.
Explanation: Let's start by naming the first student A and the second student B.
Since the product of A and B are either 12, 15, or 18, let's list every single possibility, the first number being A's number and the second number being B's number.
1 12
1 15
1 18
2 6
2 9
3 4
3 5
3 6
4 3
5 3
6 2
6 3
9 2
12 1
15 1
18 1
Now, the information says that A doesn't know what B has, so we can immediately cross off all of the combinations that have the integer appearing once and once ONLY off, because if it happened once only, A would know of it straight away. Now, our sample space becomes much smaller.
1 12
1 15
1 18
2 6
2 9
3 4
3 5
3 6
6 2
6 3
Using this same logic, we know that we can cross off all of the digits that occur only once in B's column.
2 6
3 6
Now, A definitely knows what number B has because there is only one number left in B. Hence, we can conclude that the loser, B, has the integer 6.
40 I am pretty sure that is the right answer
Answer:
Interior Angle: 165°
Exterior Angle: 15°
Step-by-step explanation:
So first you have to find the sum of all interior angles of a polygon with <u>24 sides</u>. This can be found using the formula:
sum = ( <em>n</em> - 2 ) * 180° where '<em>n</em>' is the number of sides.
When '<em>n</em> = 24' then the sum is:
sum = ( 24 - 2 ) * 180°
Simplify and solve.
sum = 22 * 180°
sum = 3960°
Since there are 24 sides to the polygon, there are 24 interior angles. <u>Assuming that this polygon is equilateral</u>, you can surmise that:
<em>Interior Angle</em> = sum° / <em>n</em> where n is the number of sides,
3960° / 24 = 165° = Interior Angle
Using that information, and combine it with the [Supplementary Angles Theorem] the exterior angle can be found by:
165° + x = 180°
Solve for x.