196 I think hope this helps
The value of h(t) when
is 10.02.
Solution:
Given function 
To find the value of h(t) when
:

Substitute
in the given function.


Now multiply the common terms into inside the bracket.

Now, in the first term, the numerator and denominator both have common factor 16. So reduce the first term into the lowest term.

To make the denominator same, take LCM of the denominators.
LCM of 64 and 32 = 64




= 10.02

Hence the value of h(t) when
is 10.02.
First, you need to get the variable by itself.
Divide three by both side.
c = -7
Brainliest answer? :)
|-3|=3 right?
Then it is
3*-6=-18
Answer:
(0.102, -0.062)
Step-by-step explanation:
sample size in 2018 = n1 = 216
sample size in 2017 = n2 = 200
number of people who went for another degree in 2018 = x1 = 54
number of people who went for another degree in 2017 = x2 = 46
p1 = x1/n1 = 0.25
p2 = x2/n2 = 0.23
At 95% confidence level, z critical = 1.96
now we have to solve for the confidence interval =
<h2>

</h2>

= 0.02 ± 1.96 * 0.042
= 0.02 + 0.082 = <u>0.102</u>
= 0.02 - 0.082 = <u>-0.062</u>
<u>There is 95% confidence that there is a difference that lies between - 0.062 and 0.102 on the proportion of students who continued their education in the years, 2017 and 2018.</u>
<u></u>
<u>There is no significant difference between the two.</u>