True
The electronegativity of an atom is the tendency of an atom in a compound or molecule to attract bonding electrons unto itself. A polar bond is formed when there is an uneven distribution of charges in the molecule brought about by differences in the electronegativities of the atoms in the bonds. These differences create regions of partially positive and partially negative charges. A nonpolar bond only have very small differences in the electronegativity of the bonding atoms.
Generally, when the difference in electronegativity is less than 0.5, the bond is polar. When the difference is between 0.5 and 1.7, the bond is polar. Finally, when the difference is greater than 1.7, the bond is ionic, which means that the bonding electron is very much attracted to the highly electronegative atom that it is transferred to the said atom instead of merely being shared by the atoms in the bond.
The process by which green plants and some other organisms use sunlight to synthesize nutrients from carbon dioxide and water. Photosynthesis in plants generally involves the green pigment chlorophyll and generates oxygen as a by-product.
Answer:

Explanation:
Since we are given the mass, specific heat, and temperature, we should use the following formula for heat energy.

The mass of the aluminum is 26.3 grams. Its specific heat is 0.930 Joules per gram degree Celsius. We need to find the change in temperature.
- The change in temperature is the difference between the initial temperature to the final temperature.
- The temperature changes <em>from</em> 23.0°C <em>to</em> 67.0°C, so the initial is 23 degrees and the final is 67 degrees.
- ΔT= final temperature - initial temperature
- ΔT= 67°C - 23°C
- ΔT= 44°C
Now we know all the values.
- m= 26.3 g
- c= 0.930 J/g °C
- ΔT= 44°C
Substitute the values into the formula.

Multiply the first two numbers together. The units of grams cancel.

Multiply again. This time, the units of degrees Celsius cancel.

<u>1076.196 Joules</u> of heat will be absorbed by the piece of aluminum.
Answer:
Manganese decreases from 4+ to 2+ (reduced and oxidizing agent) and nitrogen increases from 2+ to 5+ (oxidized and reducing agent).
Explanation:
Hello there!
In this case, according to the given redox reaction, we rewrite it as a convenient first step:

Next, we assign the oxidation numbers as follows:

Thus, we can see that both manganese and nitrogen undergo a change in their oxidation number, the former decreases from 4+ to 2+ (reduced and oxidizing agent) and the latter increases from 2+ to 5+ (oxidized and reducing agent).
Regards!