The equilibrium constant is 1.3 considering the reaction as written in the question.
<h3>Equilibrium in chemical reactions</h3>
In a chemical reaction, the equilibrium constant is calculated based on the equilibrium concentration of each specie. The equation of this reaction is;
A (g) + 2B (g) ⇌ 3C (g).
The initial concentration of each specie is;
- A - 9.22 M
- B - 10.11 M
- C - 27.83 M
The equilibrium concentration of B is 18.32 M
We now have to set up the ICE table as follows;
A (g) + 2B (g) ⇌ 3C (g)
I 9.22 10.11 27.83
C -x -x +x
E 9.22 - x 10.11 - x 27.83 + x
The equilibrium concentration of B is 18.32 M hence;
10.11 - x = 18.32
x = 10.11 - 18.32 = -8.21
Hence;
Equilibrium concentration of A = 9.22 - (-8.21) = 17.43
Equilibrium concentration of C = 27.83 + (-8.21) = 19.62
Equilibrium constant K = [19.62]^3/[17.43] [18.32]^2
K = 1.3
Learn more about equilibrium constant: brainly.com/question/17960050
Answer: Option (B) is the correct answer.
Explanation:
It is known that flow of electrons is known as current. Also, we know that electrons carry a negative charge.
Therefore, when parallel wires carrying current in the same direction then due to the same charge there will be repulsion between the electrons.
Thus, we can conclude that Ampere showed that parallel wires carrying current in the same direction would repel each other.
Answer:
The type of bonding does carbon dioxide have is covalent bonding.
Explanation:
There are 2 broadly types of chemical bonds present:
1. <u>Covalent bond:</u> This bond is present when there is sharing of electrons between two elements.
2.<u> Ionic bond:</u> This type of bond is formed when there is a complete transfer of electrons from one element to another element. In this bonding one element is always a metal and another is a non-metal.
We are given that a carbon atom is double bonded to two oxygen atoms. <u>Carbon and oxygen both are non-metals and hence, the bonds between them will be purely covalent in nature.
</u>
Also, the valency of the carbon atom is 4. Thus, in the given case, the carbon atom is bonded to 2 oxygen atoms via double bonds. Thus, they all complete their octet by sharing the electrons.
<u>Hence, the type of bonding does carbon dioxide have is covalent bonding.</u>