The rate if he went three years without an accident based on the information about the insurance is $552.15.
<h3>How to calculate the insurance?</h3>
From the information given, his basic insurance cost is $613.50 per year and his insurance company offers a typical "safe-driver discount.
The amount will be:
= 613.50 - (20.45 × 3)
= 552.15
In conclusion, the rate is $552.15.
Learn more about insurance on:
brainly.com/question/25855858
#SPJ1
Velocity = distance/time
v = d/t = 1/0.5 = 2m/s
She would save $9.12 by using the better sale! I hope this helped!:)
Answer:
Case a Case b
margin of error 0.0216 0.0231
Interval estimate (0.7016 , 0.6795) (0.5031 , 0.4569)
margin of error is not same in both cases.
Step-by-step explanation:
a
At 95% confidence interval the interval estimate of number of 20 year old drivers in year A can be computed as
p' ± z
= 0.68 ± 1.96
= 0.7016 , 0.6795
the margin of error can be written as
z
= 1.96 
= 0.0216
b
At 95% confidence interval the interval estimate of number of 20 year old drivers in year B can be computed as
p' ± z
= 0.48 ± 1.96
= 0.5031 , 0.4569
the margin of error can be written as
z
= 1.96
= 0.0231
c
Sample size is same in case A and B but proportion is different in both cases so margin of error is different in both cases
It would take 125 loaves at a cost of $200 for the breadmaker and store bought bread to cost the same.
<h3>
Linear equation</h3>
A linear equation is in the form:
y = mx + b
where y, x are variables, m is the rate of change and b is the y intercept.
Let x represent the rate of cost of one loaf and y represent the total cost, hence:
y = 0.8x + 100
The rate of cost of one loaf is $0.8 and the start up cost is $100.
For the second bread it is given by:
y = 1.6x
The graph of the two equations cross at (125, 200)
It would take 125 loaves at a cost of $200 for the breadmaker and store bought bread to cost the same.
Find out more on Linear equation at: brainly.com/question/13763238