Answer:
Option A.
Step-by-step explanation:
step 1
we know that
The equation of the solid line is

The solution is the shaded area above the solid line
so
The equation of the first inequality is

step 2
The equation of the dashed line is

The solution is the shaded area above the dashed line
so
The equation of the second inequality is

therefore
The system of inequalities could be


Answer:
x^4
Step-by-step explanation:
The expression can be simplified to (x^2)^2. Using an exponent rule, you multiply the two exponents together to get 4. The answer is x^4
The effective annual interest rate is:
i = (1 + 0.064/12)^12 - 1 = 0.066
In year 1: the interest is $613.80 (multiple $9300 by 0.066)
In year 2: the interest is $654.31 (add interest from year 1 to $9300 and multiply by 0.066)
In year 3: the interest is $656.98 (do the same as year 2)
In year 4: the interest is $657.16
The total interest is: $2582.25
The present worth of this amount is:
P = 2582.23 / (1 + 0.066)^4 = $1999.72
The answer is $1999.72.
Part A:
Given

defined by


but

Since, f(xy) ≠ f(x)f(y)
Therefore, the function is not a homomorphism.
Part B:
Given

defined by

Note that in

, -1 = 1 and f(0) = 0 and f(1) = -1 = 1, so we can also use the formular


and

Therefore, the function is a homomorphism.
Part C:
Given

, defined by


Since, f(x+y) ≠ f(x) + f(y), therefore, the function is not a homomorphism.
Part D:
Given

, defined by


but

Since, h(ab) ≠ h(a)h(b), therefore, the funtion is not a homomorphism.
Part E:
Given

, defined by
![\left([x_{12}]\right)=[x_4]](https://tex.z-dn.net/?f=%5Cleft%28%5Bx_%7B12%7D%5D%5Cright%29%3D%5Bx_4%5D)
, where
![[u_n]](https://tex.z-dn.net/?f=%5Bu_n%5D)
denotes the lass of the integer

in

.
Then, for any
![[a_{12}],[b_{12}]\in Z_{12}](https://tex.z-dn.net/?f=%5Ba_%7B12%7D%5D%2C%5Bb_%7B12%7D%5D%5Cin%20Z_%7B12%7D)
, we have
![f\left([a_{12}]+[b_{12}]\right)=f\left([a+b]_{12}\right) \\ \\ =[a+b]_4=[a]_4+[b]_4=f\left([a]_{12}\right)+f\left([b]_{12}\right)](https://tex.z-dn.net/?f=f%5Cleft%28%5Ba_%7B12%7D%5D%2B%5Bb_%7B12%7D%5D%5Cright%29%3Df%5Cleft%28%5Ba%2Bb%5D_%7B12%7D%5Cright%29%20%5C%5C%20%20%5C%5C%20%3D%5Ba%2Bb%5D_4%3D%5Ba%5D_4%2B%5Bb%5D_4%3Df%5Cleft%28%5Ba%5D_%7B12%7D%5Cright%29%2Bf%5Cleft%28%5Bb%5D_%7B12%7D%5Cright%29)
and
![f\left([a_{12}][b_{12}]\right)=f\left([ab]_{12}\right) \\ \\ =[ab]_4=[a]_4[b]_4=f\left([a]_{12}\right)f\left([b]_{12}\right)](https://tex.z-dn.net/?f=f%5Cleft%28%5Ba_%7B12%7D%5D%5Bb_%7B12%7D%5D%5Cright%29%3Df%5Cleft%28%5Bab%5D_%7B12%7D%5Cright%29%20%5C%5C%20%5C%5C%20%3D%5Bab%5D_4%3D%5Ba%5D_4%5Bb%5D_4%3Df%5Cleft%28%5Ba%5D_%7B12%7D%5Cright%29f%5Cleft%28%5Bb%5D_%7B12%7D%5Cright%29)
Therefore, the function is a homomorphism.