Answer:
P(not blue) = 3/5
Step-by-step explanation:
There are 4 blue shirts, 2 brown shirts , 2 green shirts, 1 red shirt and 1 white shirt for a total of 10 shirts
How many shirts are not blue?
2 brown shirts , 2 green shirts, 1 red shirt and 1 white shirt for a total of 6 shirts
P( not a blue shirt) = not a blue shirt/total
= 6/10
=3/5
How many facts does it take to make triangles congruent? Only 3 if they are the right three and the parts are located in the right place.
SAS where 2 sides make up one of the three angles of a triangle. The angle must between the 2 sides.
ASA where the S (side) is common to both the two given angles.
SSS where all three sides of one triangle are the same as all three sides of a second triangle. This one is my favorite. It has no exceptions.
In one very special case, you need only 2 facts, but that case is very special and it really is one of the cases above.
If you are working with a right angle triangle, you can get away with being given the hypotenuse and one of the sides. So you only need 2 facts. It is called the HL theorem. But that is a special case of SSS. The third side can be found from a^2 + b^2 = c^2.
You can also use the two sides making up the right angle but that is a special case of SAS.
Answer
There 6 parts to every triangle: 3 sides and 3 angles. If you show congruency, using any of the 3 facts above, you can conclude that the other 3 parts of the triangle are congruent as well as the three that you have.
Geometry is built on that wonderfully simple premise and it is your introduction to what makes a proof. So it's important that you understand how proving parts of congruent triangles work.
Answer: The answer is 0.2
Step-by-step explanation: 2.4g / 12 minutes
0.2g/minutes
Answer:
1) 
2) ![\sqrt[3]{y^5}=y^{\frac{5}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%5E5%7D%3Dy%5E%7B%5Cfrac%7B5%7D%7B3%7D)
3) ![\sqrt[5]{a^{12}}=a^{\frac{12}{5} }](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Ba%5E%7B12%7D%7D%3Da%5E%7B%5Cfrac%7B12%7D%7B5%7D%20%7D)
4) ![\sqrt[4]{z^{9}}=z^\frac{9}{4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bz%5E%7B9%7D%7D%3Dz%5E%5Cfrac%7B9%7D%7B4%7D)
Step-by-step explanation:
1) 
We know that 
So, 
2) ![\sqrt[3]{y^5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%5E5%7D)
We know that ![\sqrt[3]{x}=x^{\frac{1}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%3Dx%5E%7B%5Cfrac%7B1%7D%7B3%7D)
So, ![\sqrt[3]{y^5}=y^{\frac{5}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%5E5%7D%3Dy%5E%7B%5Cfrac%7B5%7D%7B3%7D)
3) ![\sqrt[5]{a^{12}}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Ba%5E%7B12%7D%7D)
We know that ![\sqrt[5]{x}=x^{\frac{1}{5}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Bx%7D%3Dx%5E%7B%5Cfrac%7B1%7D%7B5%7D)
So, ![\sqrt[5]{a^{12}}=a^{\frac{12}{5} }](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Ba%5E%7B12%7D%7D%3Da%5E%7B%5Cfrac%7B12%7D%7B5%7D%20%7D)
4) ![\sqrt[4]{z^{9}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bz%5E%7B9%7D%7D)
We know that ![\sqrt[4]{x}=x^{\frac{1}{4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%7D%3Dx%5E%7B%5Cfrac%7B1%7D%7B4%7D)
So, ![\sqrt[4]{z^{9}}=z^\frac{9}{4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bz%5E%7B9%7D%7D%3Dz%5E%5Cfrac%7B9%7D%7B4%7D)