Answer:
This idea of reflection correlating with a mirror image is similar in math.
This complete guide to reflecting over the x axis and reflecting over the y axis will provide a step-by-step tutorial on how to perform these translations.
First, let’s start with a reflection geometry definition
Math Definition: Reflection Over the X Axis
A reflection of a point, a line, or a figure in the X axis involved reflecting the image over the x axis to create a mirror image. In this case, the x axis would be called the axis of reflection.
Math Definition: Reflection Over the Y Axis
A reflection of a point, a line, or a figure in the Y axis involved reflecting the image over the Y axis to create a mirror image. In this case, theY axis would be called the axis of reflection.
What is the rule for a reflection across the X axis?
The rule for reflecting over the X axis is to negate the value of the y-coordinate of each point, but leave the x-value the same.
Answer:
it's D. I think 105 cubic feet
Answer:
1. (x,y)→(y,-x)
2. (x,y)→(-y,x)
3. (x,y)→(-x,-y)
Step-by-step explanation:
1. Rotation 90° clockwise (or 270° counterclockwise) about the origin changes x into y and y into -x, so it has the rule
(x,y)→(y,-x)
2. Rotation 90° counterclockwise (or 270° clockwise) about the origin changes x into -y and y into x, so it has the rule
(x,y)→(-y,x)
3. Rotation 180° clockwise about the origin changes x into y and y into -x, so it has the rule
(x,y)→(-x,-y)
Here you can apply rotation by 90° clockwise twice, so
(x,y)→(-y,x)→(-x,-y)
Greetings!
When reflecting a shape over the x-axis, you simply change the number to its opposite positive/negative equivalent.
This means that the new co-ordinates would be (-5,1) , (-5,4) and (-2,4).
Hope this helps!
Answer:
3.47
Step-by-step explanation:
since the third decimal is less than 5 then it doesn't carry over to the 7 thus it remains 7.