Answer:
the corresponding angles are equal in similar figures.
Step-by-step explanation:
When two figures are similar then the corresponding angles of the two figures are equal. the side of the figures are in proportional.
for example, when triangle ABC is similar to triangle DEF
then the corresponding angles are equal
<A=<D
<B=<E
<C=<F
so the corresponding angles are equal in similar figures.
Answer:
726.572699
Step-by-step explanation:
According to differentials
(x+Δx)³ = x³ + 3x²Δx + 3x(Δx)² + (Δx)³ (Using binomial expansion)
Using this formula to solve (8.99)³, this can also be written as;
(8.99)³ = (9-0.01)³ where
x = 9
Δx = -0.01
Substitute this vales into the differential expression above
(9+(-0.01))³ = 9³ + 3(9)²(-0.01) + 3(9)(-0.01)² + (-0.01)³
(9+(-0.01))³ = 729 + (243)(-0.01) + 27(0.0001) + (-0.000001)
(9+(-0.01))³ = 729-2.43+0.0027-0.000001
(9+(-0.01))³ = 729-2.43+0.0027-0.000001
(9+(-0.01))³ = 726.572699
Hence 8.99³ = 726.572699 (Using differential)
Using calculator;
8.99³ = 726.572699
What are you trying to do here?
Solve the graph, or make it appear as something else?
First, we're going to take one sec (x) out so that we get:
sec (x) (2sec (x) -1 -1) = 0
sec (x) (2sec (x) -2) = 0
Then we're going to separate the two to find the zeros of each because anything time 0 is zero.
sec(x) = 0
2sec (x) - 2 = 0
Now, let's simplify the second one as the first one is already.
Add 2 to both sides:
2sec (x) = 2
Divide by 3 on both sides:
sec (x) = 1
I forgot my unit circle, so you'd have to do that by yourself. Hopefully, I helped a bit though!
Answer:
Step-by-step explanation:
to find <e, add angles 85+58+e=180, e=37
37+90+f=180, f=53
i cant tell you more because we cant see the whole picture