Answer:
import math
# Python program for presenting all the prime numbers till an agreed numeral
prime=[]
def findprimeinanarray(n):
print("Prime numbers admid", 1, "and", n, "are:")
j=0
flag=0
for n in range(1, n + 1):
# all prime numbers are greater than
if n > 1:
for i in range(2, n):
if (n % i) == 0:
flag=0
break
else:
flag=1
if flag==1:
prime.insert(j,n)
j=j+1
else:
continue
print(prime[:])
# A Python function for printing all the prime functions and a Python program to print prime factor
prime1=[]
j=0
# A function to print all the prime factors of a given number if it is not prime
def primeFact(num):
while num % 2==0:
prime1.insert(2,0)
num = num/2
# num should be odd at this breakpoint
# so we need a shift of 2 ( i = i + 2)
for i in range(3,int(math.sqrt(num))+1,2):
# while i divides num , print i ad divide num
while num % i== 0:
num = num /i
if num >2:
j=j+1
prime1.insert(num,j)
print(prime1[:])
# program to test the coderint
n=600
findprimeinanarray(7)
k = 45
primeFact(k)
Explanation:
import math
# Python program for presenting all the prime numbers till an agreed numeral
prime=[]
def findprimeinanarray(n):
print("Prime numbers admid", 1, "and", n, "are:")
j=0
flag=0
for n in range(1, n + 1):
# all prime numbers are greater than
if n > 1:
for i in range(2, n):
if (n % i) == 0:
flag=0
break
else:
flag=1
if flag==1:
prime.insert(j,n)
j=j+1
else:
continue
print(prime[:])
# A Python function for printing all the prime functions and a Python program to print prime factor
prime1=[]
j=0
# A function to print all the prime factors of a given number if it is not prime
def primeFact(num):
while num % 2==0:
prime1.insert(2,0)
num = num/2
# num should be odd at this breakpoint
# so we need a shift of 2 ( i = i + 2)
for i in range(3,int(math.sqrt(num))+1,2):
# while i divides num , print i ad divide num
while num % i== 0:
num = num /i
if num >2:
j=j+1
prime1.insert(num,j)