Answer:
Cosine
Step-by-step explanation:
Cosine = 
Cos 70 = 
0.633 = 
0.633 x 8 =
x 8
5.064 = x
The slope of y = 3x - 4 on the interval [2, 5] is 3 and the slope of y = 2x^2-4x - 2 on the interval [2, 5] is 10
<h3>How to determine the slope?</h3>
The interval is given as:
x = 2 to x = 5
The slope is calculated as:

<u>16. y = 3x - 4</u>
Substitute 2 and 5 for x
y = 3*2 - 4 = 2
y = 3*5 - 4 = 11
So, we have:


Divide
m = 3
Hence, the slope of y = 3x - 4 on the interval [2, 5] is 3
<u>17. y = 2x^2-4x - 2</u>
Substitute 2 and 5 for x
y = 2 * 2^2 - 4 * 2 - 2 = -2
y = 2 * 5^2 - 4 * 5 - 2 = 28
So, we have:


Divide
m = 10
Hence, the slope of y = 2x^2-4x - 2 on the interval [2, 5] is 10
Read more about slopes at:
brainly.com/question/3605446
#SPJ1
Answer:
x² + y² = 34
Formula:
- (x - h)² + (y - k)² = r² where (h, k) is the center
<u>Here find the radius using distance formula</u>: → origin : (0, 0)
<u>Thus the equation of circle</u>:
- (x - 0)² + (y - 0)² = (√34)²
Answers: ∠a = 30° ; ∠b = 60° ; ∠c = 105<span>°.
</span>_____________________________________________
1) The measure of Angle a is 30°. (m∠a = 30°).
Proof: All vertical angles are congruent, and we are shown in the diagram that angle A — AND the angle labeled with the measurement of 30°— are vertical angles.
2) The measure of Angle b is 60°. (m∠b = 60<span>°).
Proof: All three angles of a triangle add up to 90 degrees. In the diagram, we can examine the triangle formed by Angle A, Angle B, and a 90</span>° angle. This is a right triangle, and the angle with 90∠ degrees is indicated as such (with the "square" symbol). So we know that one angle is 90°. We also know that m∠a = 30°. If there are three angles in a triangle, and all three angles must add up to 180°, and we know the measurements of two of the three angles, we can solve for the unknown measurement of the remaining angle, which in this case is: m∠b.
90° + 30° + m∠b = 180<span>° ;
</span>180° - (<span>90° + 30°) = m∠b ;
</span>180° - (120°) = m∠b = 60<span>°
</span>___________________________
Now we need to solve for the measure of Angle c (<span>m∠c).
___________________________________________
All angles on a straight line (or straight "line segment") are called "supplementary angles" and must add up to 180</span>°. As shown, Angle c is on a "straight line". The measurement of the remaining angle represented ("supplementary angle" to Angle c is 75° (shown on diagram). As such, the measure of "Angle C" (m∠c) = m∠c = 180° - 75° = 105°.