1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WARRIOR [948]
3 years ago
9

(3x – 70) (3y+40) 120 x

Mathematics
2 answers:
enyata [817]3 years ago
4 0

Answer:

3x-70

Step-by-step explanation:

(3y+40 ) 120x is the answer of that question answer

Lelu [443]3 years ago
4 0

120x(3x-70)(3y+40)=
360x 2nd power -8400x)(3y+40)=
1080x 2nd power y+14400x 2nd power-25200xy-336000x
You might be interested in
A table of values of a linear function is shown below. Find the output when the input is n.
Vlad [161]

Answer:

Step-by-step explanation:

output = y

input = x

y=-2x + 3

if you follow the pattern, the next input is 5 which will output -7

3 0
2 years ago
Use the graph to determine the function's domain and range. Explain your answer.
mixas84 [53]
The domain is defined as  all the possible x values. The graph extends to the left and to the right without bounds  so the domain is All Real Values of x.
It can also be written as   (-∞, ∞)  This is called interval notation.

Note that  the minimum value of f(x)  is -4  so the range is [-4, ∞).   (All real values of y equal to or greater than -4)

3 0
3 years ago
The mathematics department at a community college collected data for the number of students enrolled in 40 math classes over the
Colt1911 [192]

Answer:

D.

Step-by-step explanation:

6 0
3 years ago
Whats the solution ​
Sergio039 [100]

Answer:

Step-by-step explanation:

To find the center and the radius, we need to put the equation in the (x-a)^2+(y-b)^2=r^2 [a is the x-coordinate, b is the y-coordinate, and r is the radius].

(x+6)^2+(y+7)^2 - 36 - 49 + 69 = 0

(x+6)^2+(y+7)^2 - 16 = 0

(x+6)^2+(y+7)^2 = 16

(x+6)^2+(y+7)^2 = 4^2

The center is (-6,-7) and the radius is 4.

Hope this helps!

5 0
2 years ago
Calculus 3 help please.​
Reptile [31]

I assume each path C is oriented positively/counterclockwise.

(a) Parameterize C by

\begin{cases} x(t) = 4\cos(t) \\ y(t) = 4\sin(t)\end{cases} \implies \begin{cases} x'(t) = -4\sin(t) \\ y'(t) = 4\cos(t) \end{cases}

with -\frac\pi2\le t\le\frac\pi2. Then the line element is

ds = \sqrt{x'(t)^2 + y'(t)^2} \, dt = \sqrt{16(\sin^2(t)+\cos^2(t))} \, dt = 4\,dt

and the integral reduces to

\displaystyle \int_C xy^4 \, ds = \int_{-\pi/2}^{\pi/2} (4\cos(t)) (4\sin(t))^4 (4\,dt) = 4^6 \int_{-\pi/2}^{\pi/2} \cos(t) \sin^4(t) \, dt

The integrand is symmetric about t=0, so

\displaystyle 4^6 \int_{-\pi/2}^{\pi/2} \cos(t) \sin^4(t) \, dt = 2^{13} \int_0^{\pi/2} \cos(t) \sin^4(t) \,dt

Substitute u=\sin(t) and du=\cos(t)\,dt. Then we get

\displaystyle 2^{13} \int_0^{\pi/2} \cos(t) \sin^4(t) \, dt = 2^{13} \int_0^1 u^4 \, du = \frac{2^{13}}5 (1^5 - 0^5) = \boxed{\frac{8192}5}

(b) Parameterize C by

\begin{cases} x(t) = 2(1-t) + 5t = 3t - 2 \\ y(t) = 0(1-t) + 4t = 4t \end{cases} \implies \begin{cases} x'(t) = 3 \\ y'(t) = 4 \end{cases}

with 0\le t\le1. Then

ds = \sqrt{3^2+4^2} \, dt = 5\,dt

and

\displaystyle \int_C x e^y \, ds = \int_0^1 (3t-2) e^{4t} (5\,dt) = 5 \int_0^1 (3t - 2) e^{4t} \, dt

Integrate by parts with

u = 3t-2 \implies du = 3\,dt \\\\ dv = e^{4t} \, dt \implies v = \frac14 e^{4t}

\displaystyle \int u\,dv = uv - \int v\,du

\implies \displaystyle 5 \int_0^1 (3t-2) e^{4t} \,dt = \frac54 (3t-2) e^{4t} \bigg|_{t=0}^{t=1} - \frac{15}4 \int_0^1 e^{4t} \,dt \\\\ ~~~~~~~~ = \frac54 (e^4 + 2) - \frac{15}{16} e^{4t} \bigg|_{t=0}^{t=1} \\\\ ~~~~~~~~ = \frac54 (e^4 + 2) - \frac{15}{16} (e^4 - 1) = \boxed{\frac{5e^4 + 55}{16}}

(c) Parameterize C by

\begin{cases} x(t) = 3(1-t)+t = -2t+3 \\ y(t) = (1-t)+2t = t+1 \\ z(t) = 2(1-t)+5t = 3t+2 \end{cases} \implies \begin{cases} x'(t) = -2 \\ y'(t) = 1 \\ z'(t) = 3 \end{cases}

with 0\le t\le1. Then

ds = \sqrt{(-2)^2 + 1^2 + 3^2} \, dt = \sqrt{14} \, dt

and

\displaystyle \int_C y^2 z \, ds = \int_0^1 (t+1)^2 (3t+2) \left(\sqrt{14}\,ds\right) \\\\ ~~~~~~~~ = \sqrt{14} \int_0^1 \left(3t^3 + 8t^2 + 7t + 2\right) \, dt \\\\ ~~~~~~~~ = \sqrt{14} \left(\frac34 t^4 + \frac83 t^3 + \frac72 t^2 + 2t\right) \bigg|_{t=0}^{t=1} \\\\ ~~~~~~~~ = \sqrt{14} \left(\frac34 + \frac83 + \frac72 + 2\right) = \boxed{\frac{107\sqrt{14}}{12}}

8 0
1 year ago
Other questions:
  • PLEASE HELP!! algebra 2
    13·1 answer
  • O is the center of the given circle. The measure of angle O is 128°. The diagram is not drawn to scale.
    10·2 answers
  • Recall that if we have m vectors u1, U2, ..., um in R", then we can form the matrix A whose columns are u1, ... , Um. Let B be t
    11·1 answer
  • Help me with this geometry questions please (Radom questions will be reported)
    5·1 answer
  • If you grow 523 eggplants and sell 378, how many do you have left? A. 901 B. 154 C. 197 End of exam D. 145
    8·2 answers
  • Analyze the number line below and answer the question that follows
    12·1 answer
  • I WILL GIVE BRAINLIEST TO RIGHT ANSWER
    6·1 answer
  • PLEASE HELP MEE EVERYONE IS WASTING MY POINTs PLEASE
    5·1 answer
  • One gram is approximately 0.0022 pounds.<br> Express the measurement in scientific notation.
    6·2 answers
  • 29 = v+17 what the answer cs ion get it
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!