In a chemical reaction, matter can neither be created nor destroyed, so the products that come out of a reaction must equal the reactants that go into a reaction. Stoichiometry is the measure of the elements within a reaction.[1] It involves calculations that take into account the masses of reactants and products in a given chemical reaction. Stoichiometry is one half math, one half chemistry, and revolves around the one simple principle above - the principle that matter is never lost or gained during a reaction. The first step in solving any chemistry problem is to balance the equation.
<span>
</span>
Explanation:
(a) Formula that shows relation between
and
is as follows.
Here,
= 1
Putting the given values into the above formula as follows.
= 
= 
= 0.01316
(b) As the given reaction equation is as follows.

As there is only one gas so
,
= 1.20
Therefore, pressure of
in the container is 1.20.
(c) Now, expression for
for the given reaction equation is as follows.
![K_{c} = \frac{[CaO][CO_{2}]}{[CaCO_{3}]}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cfrac%7B%5BCaO%5D%5BCO_%7B2%7D%5D%7D%7B%5BCaCO_%7B3%7D%5D%7D)
=
= \frac{x^{2}}{(a - x)}[/tex]
where, a = initial conc. of 
=
= 0.023 M
0.0131 =
x = 0.017
Therefore, calculate the percentage of calcium carbonate remained as follows.
% of
remained =
= 75.46%
Thus, the percentage of calcium carbonate remained is 75.46%.
Explanation:
here's the answer to the question
To calculate the number of moles we will use Avogadro's number, which relates the number of molecules contained in a mole of any substance, the relationship between moles and molecules is as follows:

In the statement we are given the molecules with 3 significant figures, therefore the answer must also have 3 significant figures. So the answer will be: In 5.25x10^29molecules are 8.72x10^5 mol of sucrose