The molality is 0.54 M when 1.34 moles of NaCl is present in 2.47 kg of solvent.
<u>Explanation:</u>
Molality is the measure of how much of amount of solute is dissolved in the solvent. So it is calculated as the ratio of moles of solute to the grams of solvent.

As in this case, the solute is NaCl and solvent is unknown. So the moles of solute is given as 1.34 moles and the mass of solvent is given as 2.47 kg.
Hence, 
Thus, the molality is 0.54 M when 1.34 moles of NaCl is present in 2.47 kg of solvent.
The equilibrium vapour pressure is typically the pressure exerted by a liquid .... it is A FUNCTION of temperature...
Explanation:
By way of example, chemists and physicists habitually use
P
saturated vapour pressure
...where
P
SVP
is the vapour pressure exerted by liquid water. At
100
∘
C
,
P
SVP
=
1
⋅
a
t
m
. Why?
Well, because this is the normal boiling point of water: i.e. the conditions of pressure (i.e. here
1
⋅
a
t
m
) and temperature, here
100
∘
C
, at which the VAPOUR PRESSURE of the liquid is ONE ATMOSPHERE...and bubbles of vapour form directly in the liquid. As an undergraduate you should commit this definition, or your text definition, to memory...
At lower temperatures, water exerts a much lower vapour pressure...but these should often be used in calculations...especially when a gas is collected by water displacement. Tables of
saturated vapour pressure
are available.
Answer:
c. 77 %
Explanation:
Percent mass (% mass) of solute = mass of solute/mass of solution × 100
According to this question, a mountain dew solution weighing 300grams contains 231 g of sugar. This means that:
% mass of sugar = 231g/300g × 100
% mass of sugar = 0.77 × 100
% mass of sugar = 77%.
Answer:
I believe the answer is "b". "During the experiment, the scientist has only one element, or variable, that is changed to test the hypothesis."
Explanation:
I remember from last year but I'm not totally sure. Good luck!