The model would be 4.05 feet long
There is one clock that shows the right time so we do not have to worry about the one which is always correct.
Talking about the second clock that loses a minutes in every 24 hours (or in a day), so after 60 days (since it has lost 60 minutes because it is losing 1 minute everyday) it will show 11:00 a.m when it is exactly the noon.
So this way, in total it will take
days before it shows the correct noon.
Now, the third clock gains a minute every 24 hours (or in a day) , after 60 days (when it has gained 60 minutes or a complete hour) it will show 1:00 p.m when it is exactly the noon.
This way, it will take
days (since it has gained a minute everyday) when it shows the correct noon.
Therefore, it will take 1440 days before all the three clocks show the correct time again.
Answer:
$54.25
Step-by-step explanation:
decide 38.75 by 5 to get what each cost then multiply by 7 to get your answer
Answer:
Independent: The people who attend.
Dependent: The copies she has to make.
Step-by-step explanation:
She will make a certain amount of copies depending of how many people attend.
Answer: (a) P(no A) = 0.935
(b) P(A and B and C) = 0.0005
(c) P(D or F) = 0.379
(d) P(A or B) = 0.31
Step-by-step explanation: <u>Pareto</u> <u>Chart</u> demonstrates a relationship between two quantities, in a way that a relative change in one results in a change in the other.
The Pareto chart below shows the number of people and which category they qualified each public school.
(a) The probability of a person not giving an A is the difference between total probability (1) and probability of giving an A:
P(no A) = 
P(no A) = 1 - 0.065
P(no A) = 0.935
b) Probability of a grade better than D, is the product of the probabilities of an A, an B and an C:
P(A and B and C) = 
P(A and B and C) = 
P(A and B and C) = 0.0005
c) Probability of an D or an F is the sum of probabilities of an D and of an F:
P(D or F) = 
P(D or F) = 
P(D or F) = 0.379
d) Probability of an A or B is also the sum of probabilities of an A and of an B:
P(A or B) = 
P(A or B) = 
P(A or B) = 0.31