Answer:
AAS
Step-by-step explanation:
HEHE
Answer:
(a) See attachment for tree diagram
(b) 24 possible outcomes
Step-by-step explanation:
Given


Solving (a): A possibility tree
If urn 1 is selected, the following selection exists:
![B_1 \to [R_1, R_2, R_3]; R_1 \to [B_1, R_2, R_3]; R_2 \to [B_1, R_1, R_3]; R_3 \to [B_1, R_1, R_2]](https://tex.z-dn.net/?f=B_1%20%5Cto%20%5BR_1%2C%20R_2%2C%20R_3%5D%3B%20R_1%20%5Cto%20%5BB_1%2C%20R_2%2C%20R_3%5D%3B%20R_2%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_3%5D%3B%20R_3%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_2%5D)
If urn 2 is selected, the following selection exists:
![B_2 \to [B_3, R_4, R_5]; B_3 \to [B_2, R_4, R_5]; R_4 \to [B_2, B_3, R_5]; R_5 \to [B_2, B_3, R_4]](https://tex.z-dn.net/?f=B_2%20%5Cto%20%5BB_3%2C%20R_4%2C%20R_5%5D%3B%20B_3%20%5Cto%20%5BB_2%2C%20R_4%2C%20R_5%5D%3B%20R_4%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_5%5D%3B%20R_5%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_4%5D)
<em>See attachment for possibility tree</em>
Solving (b): The total number of outcome
<u>For urn 1</u>
There are 4 balls in urn 1

Each of the balls has 3 subsets. i.e.
![B_1 \to [R_1, R_2, R_3]; R_1 \to [B_1, R_2, R_3]; R_2 \to [B_1, R_1, R_3]; R_3 \to [B_1, R_1, R_2]](https://tex.z-dn.net/?f=B_1%20%5Cto%20%5BR_1%2C%20R_2%2C%20R_3%5D%3B%20R_1%20%5Cto%20%5BB_1%2C%20R_2%2C%20R_3%5D%3B%20R_2%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_3%5D%3B%20R_3%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_2%5D)
So, the selection is:


<u>For urn 2</u>
There are 4 balls in urn 2

Each of the balls has 3 subsets. i.e.
![B_2 \to [B_3, R_4, R_5]; B_3 \to [B_2, R_4, R_5]; R_4 \to [B_2, B_3, R_5]; R_5 \to [B_2, B_3, R_4]](https://tex.z-dn.net/?f=B_2%20%5Cto%20%5BB_3%2C%20R_4%2C%20R_5%5D%3B%20B_3%20%5Cto%20%5BB_2%2C%20R_4%2C%20R_5%5D%3B%20R_4%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_5%5D%3B%20R_5%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_4%5D)
So, the selection is:


Total number of outcomes is:



1. The major arc ED has measure 180 degrees since ED is a diameter of the circle. The measure of arc EF is
, so the measure of arc DF is

The inscribed angle theorem tells us that the central angle subtended by arc DF,
, has a measure of twice the measure of the inscribed angle DEF (which is the same angle OEF) so

so the measure of arc DF is also 64 degrees. So we have

###
2. Arc FE and angle EOF have the same measure, 56 degrees. By the inscribed angle theorem,

Triangle DEF is isosceles because FD and ED have the same length, so angles EFD and DEF are congruent. Also, the sum of the interior angles of any triangle is 180 degrees. It follows that

Triangle OFE is also isosceles, so angles EFO and FEO are congruent. So we have
