1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kramer
3 years ago
14

Pls heeeeeeeeeeeeelp me

Mathematics
1 answer:
kipiarov [429]3 years ago
3 0

Answer: I AM SORRY

Step-by-step explanation:

You might be interested in
Verify each trigonometric equation by substituting identities to match the right hand side of the equation to the left hand side
lorasvet [3.4K]

Answer:

Step-by-step explanation:

1.

cot x sec⁴ x = cot x+2 tan x +tan³x

L.H.S = cot x sec⁴x

       =cot x (sec²x)²

       =cot x (1+tan²x)²     [ ∵ sec²x=1+tan²x]

       =  cot x(1+ 2 tan²x +tan⁴x)

       =cot x+ 2 cot x tan²x+cot x tan⁴x

        =cot x +2 tan x + tan³x        [ ∵cot x tan x =\frac{ \textrm{tan x }}{\textrm{tan x}} =1]

       =R.H.S

2.

(sin x)(tan x cos x - cot x cos x)=1-2 cos²x

 L.H.S =(sin x)(tan x cos x - cot x cos x)

          = sin x tan x cos x - sin x cot x cos x

           =\textrm{sin x cos x }\times\frac{\textrm{sin x}}{\textrm{cos x} } - \textrm{sinx}\times\frac{\textrm{cos x}}{\textrm{sin x}}\times \textrm{cos x}

           = sin²x -cos²x

           =1-cos²x-cos²x

           =1-2 cos²x

           =R.H.S

         

3.

1+ sec²x sin²x =sec²x

L.H.S =1+ sec²x sin²x

         =1+\frac{{sin^2x}}{cos^2x}                       [\textrm{sec x}=\frac{1}{\textrm{cos x}}]

         =1+tan²x                        [\frac{\textrm{sin x}}{\textrm{cos x}} = \textrm{tan x}]

         =sec²x

        =R.H.S

4.

\frac{\textrm{sinx}}{\textrm{1-cos x}} +\frac{\textrm{sinx}}{\textrm{1+cos x}} = \textrm{2 csc x}

L.H.S=\frac{\textrm{sinx}}{\textrm{1-cos x}} +\frac{\textrm{sinx}}{\textrm{1+cos x}}

       =\frac{\textrm{sinx(1+cos x)+{\textrm{sinx(1-cos x)}}}}{\textrm{(1-cos x)\textrm{(1+cos x})}}

      =\frac{\textrm{sinx+sin xcos x+{\textrm{sinx-sin xcos x}}}}{{(1-cos ^2x)}}

     =\frac{\textrm{2sin x}}{sin^2 x}

      = 2 csc x

    = R.H.S

5.

-tan²x + sec²x=1

L.H.S=-tan²x + sec²x

        = sec²x-tan²x

        =\frac{1}{cos^2x} -\frac{sin^2x}{cos^2x}

        =\frac{1- sin^2x}{cos^2x}

        =\frac{cos^2x}{cos^2x}

        =1

     

       

8 0
4 years ago
What is 1+2+3+⋯+2014+2015+2016
OleMash [197]

Answer:6,051

Step-by-step explanation:1+2+3+2,014+2,015+2,016

5 0
3 years ago
Find the area of the circle and explain how u got the answer  . thanks 
trasher [3.6K]

A = (pi)r^2

diameter = 12 in

radius = d/2 = 6 in

A = (pi)6^2

A = 36(pi)

3 0
3 years ago
Simplify 36ab divided by 40ab​
Andru [333]
Search Results
Featured snippet from the web
What is 36/40 Simplified? - 9/10 is the simplified fraction for 36/40.
8 0
4 years ago
I need help with 1-3 please and help!
Ghella [55]

Answer:

Q : 3

10x - 11 = 120 - 11 = 109°

 3x - 2    = 36 - 2  = 34°

 3x + 1     = 36 + 1  = 37°

Q ; 2

3x - 5 = 27 - 5= 22°

7x + 5 = 63 + 5 = 68°

And 90°

Q1 :

∠1 = 92°

∠2 = 42°

∠3 =  113°

Step-by-step explanation:

Solution for Q : 3

As the angle of all three is given as ,

10x - 11

3x - 2

3x + 1

We know sum of all the three angles of triangle = 180 °

So, (10x - 11) + (3x - 2) + (3x + 1) = 180°

Or,   16x - 12 = 180°

Or     16x = 192°, So    , x = 12

So, all three angles are 10x - 11 = 120 - 11 = 109°

                                       3x - 2    = 36 - 2  = 34°

                                       3x + 1     = 36 + 1  = 37°

Solution for Q - 2

Given angles are

3x - 5

7x + 5

90°

We know sum of all the three angles of triangle = 180 °

so ,(3x - 5) + (7x + 5) + 90 = 180°

or 10x  =                       180 - 90 = 90°

SO, x = 9°

SO, all the three angles are 3x - 5 = 27 - 5= 22°

                                              7x + 5 = 63 + 5 = 68°

And                                                                    90°

Solution for Q : 1

From,

the shown fig it is clear that

The ∠2 = 42°      (<u> opposite vertical angles</u> )

so, in  left triangle

50° + ∠2 + ∠1  = 180°

Or,  50° + 42° + ∠1 = 180°     ( sum of all angles of triangles = 180°)

Or, ∠1 = 92°

 Again

From right figure triangle

∠2 + 25° + ∠3 = 180°

Or, 42° + 25° + ∠3 = 180

Or, ∠3 = 113°

3 0
3 years ago
Other questions:
  • Can someone tell me what the small circles on the angles of the triangles mean and what they are called?
    15·2 answers
  • A mound of dirt sits next to a hole that is 8 feet deep by 8 feet wide by 8 feet long. If the dirt was dug out to make the hole,
    7·1 answer
  • Find the slope of a line that is perpendicular to the line containing the points (–2, –1) and (2, –3). (1 point)
    15·1 answer
  • Write an expression with (-1) as its base that will product a negative product
    9·1 answer
  • Amanda was 48 inches. she grew n inches last year and is now 56.5 in write expression that represents the number of inches Amand
    12·2 answers
  • Simplify this ratio by dividing both parts
    9·1 answer
  • What is the slope of the line that is parallel to the given line and passes through the given point?
    6·1 answer
  • 3. If a + b = C, which of the following statements is true?
    9·2 answers
  • If Andy had an ending balance of $5600 and Charlie had an ending balance of $5624.32, what is the difference in their account ba
    7·2 answers
  • Find the quotient <br> 2/5÷3/4
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!