Answer:
Step-by-step explanation:
1.
cot x sec⁴ x = cot x+2 tan x +tan³x
L.H.S = cot x sec⁴x
=cot x (sec²x)²
=cot x (1+tan²x)² [ ∵ sec²x=1+tan²x]
= cot x(1+ 2 tan²x +tan⁴x)
=cot x+ 2 cot x tan²x+cot x tan⁴x
=cot x +2 tan x + tan³x [ ∵cot x tan x =1]
=R.H.S
2.
(sin x)(tan x cos x - cot x cos x)=1-2 cos²x
L.H.S =(sin x)(tan x cos x - cot x cos x)
= sin x tan x cos x - sin x cot x cos x
= sin²x -cos²x
=1-cos²x-cos²x
=1-2 cos²x
3.
1+ sec²x sin²x =sec²x
L.H.S =1+ sec²x sin²x
= []
=1+tan²x
=sec²x
4.
L.H.S=
= 2 csc x
= R.H.S
5.
-tan²x + sec²x=1
L.H.S=-tan²x + sec²x
= sec²x-tan²x
=
=1
length = 14 m
width = 7 m
l = length
w = width
l = 2w - 8
w(2w - 8) = 42
2w² - 8w - 42 = 0
you can factor out a 2 to work with smaller numbers:
w² - 4w - 21 = 0
(w - 7)(w + 3) = 0
w = 7
'w' cannot equal a negative so we discount it as an answer
find length:
l = 2(7) - 8
l = 14 - 8 or 6m
a) ∀x∃y ¬∀zT(x, y, z)
∀x∃y ∃z ¬T(x, y, z)
b) ∀x¬[∃y (P(x, y) ∨ Q(x, y))]
∀x∀y ¬ [P(x, y) ∨ Q(x, y)]
∀x∀y [¬P(x, y) ^ ¬Q(x, y)]
c) ∀x ¬∃y (P(x, y) ^ ∃zR(x, y, z))
∀x ∀y ¬(P(x, y) ^ ∃zR(x, y, z))
∀x ∀y (¬P(x, y) v ¬∃zR(x, y, z))
∀x ∀y (¬P(x, y) v ∀z¬R(x, y, z))
d) ∀x¬∃y (P(x, y) → Q(x, y))
∀x∀y ¬(P(x, y) → Q(x, y))
∀x∀y (¬P(x, y) ^ Q(x, y))
x = 7
the 2 is doubled so the 3.5 has to be doubled as well
The 2nd one/Green
A plane figure with five straight sides and five angles.
2 Gallons is 8 quarts.