No. the first 3 is 300, the second 3 is 30, and the third 3 is 3
<h2>Answer:</h2>
A. Lowering the discount rate to provide more loans to banks
<em>P</em><em>l</em><em>s</em><em> </em><em>c</em><em>o</em><em>r</em><em>r</em><em>e</em><em>c</em><em>t</em><em> </em><em>m</em><em>y</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>i</em><em>f</em><em> </em><em>i</em><em>t</em><em>s</em><em> </em><em>w</em><em>r</em><em>o</em><em>n</em><em>g</em><em> </em>^_^
Answer:
Maya is correct. She wrote equivalent fractions with the same denominator and then correctly compared the fractions. Aimee wrote equivalent fractions with the same numerator but did not correctly compare the fractions. Only Maya is correct.
When you're comparing fractions, you have to set them equal to the same denominator, not the same numerator.
Hope this helps
Answer:
B
Step-by-step explanation:
It includes specifics which shouldn’t be in a summary
Prove we are to prove 4(coshx)^3 - 3(coshx) we are asked to prove 4(coshx)^3 - 3(coshx) to be equal to cosh 3x
= 4(e^x+e^(-x))^3/8 - 3(e^x+e^(-x))/2 = e^3x /2 +3e^x /2 + 3e^(-x) /2 + e^(-3x) /2 - 3(e^x+e^(-x))/2 = e^(3x) /2 + e^(-3x) /2 = cosh(3x) = LHS Since y = cosh x satisfies the equation if we replace the "2" with cosh3x, we require cosh 3x = 2 for the solution to work.
i.e. e^(3x)/2 + e^(-3x)/2 = 2
Setting e^(3x) = u, we have u^2 + 1 - 4u = 0
u = (4 + sqrt(12)) / 2 = 2 + sqrt(3), so x = ln((2+sqrt(3))/2) /3, Or u = (4 - sqrt(12)) / 2 = 2 - sqrt(3), so x = ln((2-sqrt(3))/2) /3,
Therefore, y = cosh x = e^(ln((2+sqrt(3))/2) /3) /2 + e^(-ln((2+sqrt(3))/2) /3) /2 = (2+sqrt(3))^(1/3) / 2 + (-2-sqrt(3))^(1/3) to be equ
= 4(e^x+e^(-x))^3/8 - 3(e^x+e^(-x))/2
= e^3x /2 +3e^x /2 + 3e^(-x) /2 + e^(-3x) /2 - 3(e^x+e^(-x))/2
= e^(3x) /2 + e^(-3x) /2
= cosh(3x)
= LHS
<span>Therefore, because y = cosh x satisfies the equation IF we replace the "2" with cosh3x, we require cosh 3x = 2 for the solution to work. </span>
i.e. e^(3x)/2 + e^(-3x)/2 = 2
Setting e^(3x) = u, we have u^2 + 1 - 4u = 0
u = (4 + sqrt(12)) / 2 = 2 + sqrt(3), so x = ln((2+sqrt(3))/2) /3,
Or u = (4 - sqrt(12)) / 2 = 2 - sqrt(3), so x = ln((2-sqrt(3))/2) /3,
Therefore, y = cosh x = e^(ln((2+sqrt(3))/2) /3) /2 + e^(-ln((2+sqrt(3))/2) /3) /2
= (2+sqrt(3))^(1/3) / 2 + (-2-sqrt(3))^(1/3)