Answer:
infinite solutions
Step-by-step explanation:
y=5/2x+2
2y= 5x +4
Multiply the first equation by 2
y = 5/2 x +2
2y = 5/2 *2 x +2 *2
2y = 5x +4
Since this is identical to the second equation (they are the same), the system of equations has infinite solutions
The answer is: y= 2/3x +5
To solve, we will follow the steps below:
3x+y=11 --------------------------(1)
5x-y=21 ------------------------------(2)
since y have the same coefficient, we can eliminate it directly by adding equation (1) and (2)
adding equation (1) and (2) will result;
8x =32
divide both-side of the equation by 8
x = 4
We move on to eliminate x and then solve for y
To eliminate x, we have to make sure the coefficient of the two equations are the same.
We can achieve this by multiplying through equation (1) by 5 and equation (2) by 3
The result will be;
15x + 5y = 55 ----------------------------(3)
15x - 3y =63 --------------------------------(4)
subtract equation (4) from equation(3)
8y = -8
divide both-side of the equation by 8
y = -1
Ella has to add 32.833 lbs of water to get 33.333 lbs of syrup.
<u>Solution:</u>
Ella has 0.5 lbs of sugar. Let x lbs be the amount of water Ella should add to get the 1.5% of syrup,


On writing the proportion,

To get 1.5% syrup Ella should add 32.833 lbs of water. The total weight of syrup is 33.333 lbs.
Answer:
y = 9x/5 + 50
Step-by-step explanation:
We are represent the information as coordinate (x,y)
If the cost for an order of 100 kilograms of steel bars is $230, this is expressed as (100, 230)
Also if the cost for an order of 150 kilograms of steel bars is $320, this is expressed as;
(150, 320)
Find the equation of a line passing through the points. The standard form of the equation is expressed as y = mx+c
m is the slope
c is the intercept
Get the slope;
m = y2-y1/x2-x1
m = 320-230/150-100
m = 90/50
m = 9/5
Get the y-intercept by substituting m = 9/5 and any point say (100, 230) into the expression y = mx+c
230 = 9/5(100)+c
230 = 9(20)+c
230 = 180 + c
c = 230-180
c = 50
Get the required equation
y = mx+c
y = 9/5 x + 50
Hence an equation for the cost of an order of steel bars (y) in terms of the weight of steel bars ordered (x) is y = 9x/5 + 50