Answer:

Step-by-step explanation:
we know that
In a rectangle, the two diagonals are congruent and each diagonal bisects the other
so
----> equation A
-----> equation B
step 1
Find the value of x
solve equation A

substitute the given values

solve for x

step 2
Find the value of KE

substitute the value of x

Remember that
-----> by each diagonal bisects the other
therefore



- <u>Jan </u><u>purchased </u><u>1</u><u>4</u><u>0</u><u> </u><u>shares </u><u>of </u><u>stock </u><u>in </u><u>ABC </u><u>company </u><u>at </u><u>a </u><u>price </u><u>of </u><u>$</u><u>1</u><u>8</u><u>.</u><u>7</u><u>5</u><u> </u><u>per </u><u>share </u>
- <u>During </u><u>the </u><u>next </u><u>3</u><u> </u><u>days</u><u>, </u><u> </u><u>the </u><u>value </u><u>of </u><u>share </u><u>declined </u><u>by </u><u>$</u><u>1</u><u>.</u><u>0</u><u>0</u><u> </u><u>,</u><u> </u><u>$</u><u>1</u><u>.</u><u>7</u><u>5</u><u> </u><u>and </u><u>$</u><u>1</u><u>.</u><u>5</u><u>0</u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>value </u><u>of </u><u>a </u><u>share </u><u>of </u><u>ABC </u><u>stock </u><u>at </u><u>the </u><u>end </u><u>of </u><u>3</u><u> </u><u>days </u>

<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>
Cost of 1 share of ABC company = $18.75
<u>Therefore</u><u>, </u>
Cost of 140 shares purchased by Jan in the ABC company


<u>Now</u><u>, </u>
For next 3 days, the value of share declined


<u>Therefore</u><u>, </u>
The value of shares after 3 days will be



Hence, The value of share after 3 days will be $18.75 .
Answer:
is 
Step-by-step explanation:
var x = +3 (one side of right angled triangle)
var y = +1 (the other side of the right angled triangle)
Use the Pythagoras' Theorem.
3² + 1² = 10
Answer: the function g(x) has the smallest minimum y-value.
Explanation:
1) The function f(x) = 3x² + 12x + 16 is a parabola.
The vertex of the parabola is the minimum or maximum on the parabola.
If the parabola open down then the vertex is a maximum, and if the parabola open upward the vertex is a minimum.
The sign of the coefficient of the quadratic term tells whether the parabola opens upward or downward.
When such coefficient is positive, the parabola opens upward (so it has a minimum); when the coefficient is negative the parabola opens downward (so it has a maximum).
Here the coefficient is positive (3), which tells that the vertex of the parabola is a miimum.
Then, finding the minimum value of the function is done by finding the vertex.
I will change the form of the function to the vertex form by completing squares:
Given: 3x² + 12x + 16
Group: (3x² + 12x) + 16
Common factor: 3 [x² + 4x ] + 16
Complete squares: 3[ ( x² + 4x + 4) - 4] + 16
Factor the trinomial: 3 [(x + 2)² - 4] + 16
Distributive property: 3 (x + 2)² - 12 + 16
Combine like terms: 3 (x + 2)² + 4
That is the vertex form: A(x - h)² + k, whch means that the vertex is (h,k) = (-2, 4).
Then the minimum value is 4 (when x = - 2).
2) The othe function is <span>g(x)= 2 *sin(x-pi)
</span>
The sine function goes from -1 to + 1, so the minimum value of sin(x - pi) is - 1.
When you multiply by 2, you just increased the amplitude of the function and obtain the new minimum value is 2 (-1) = - 2
Comparing the two minima, you have 4 vs - 2, and so the function g(x) has the smallest minimum y-value.
Answer:
43
Step-by-step explanation:
43 is a prime number