Answer:
c. 0.2 M HNO₃ and 0.4 M NaF
.
Explanation:
A buffer is defined as the mixture of a weak acid with its conjugate base or a weak base with its conjugate acid.
A weak acid or weak base are defined as an acid or base that partially dissociates in aqueous solution. in contrast, a strong acid or base are acids or bases that is dissociated completely in water.
Thus:
a. 0,2M HNO₃ and 0.4 M NaNO₃. This is a mixture of a strong acid with its conjugate base. <em>IS NOT </em>a buffer.
b. 0.2 M HNO₃ and 0.4 M HF
. This is a mixture of two strong acids. <em>IS NOT </em>a buffer.
c. 0.2 M HNO₃ and 0.4 M NaF
. NaF is the conjugate base of a weak acid as HF is.
The reaction of HNO₃ with NaF is:
HNO₃ + NaF → HF + NaNO₃
That means that in solution you will have a weak acid (HF) with its conjugate base (NaF). Thus, this mixture <em>IS </em>a buffer.
d. 0.2 M HNO₃ and 0.4 M NaOH. This is the mixture of a strong acid with a strong base, thus, this <em>IS NOT </em>a buffer.
I hope it helps!
This is a false statement. Graduated cylinders measure volume, yes, but i'm afraid that beakers do not.
Hope this helps!
State the given:
Moles of Sulfur = 5 moles
Molar mass of Sulfur = 32.06g/mol
Look through the formulas:
Moles = Mass/Molar Mass
Rearrange the equation:
Mass = Moles x Molar mass
Plug in your given:
5 moles Sulfur x <u>32.06g</u>
1 mol
<u>= 160.3g of Sulfur</u>
Answer: increase
Explanation: when Mg is powder it has greater surface area and
Reaction occurs faster