1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iragen [17]
3 years ago
5

Which expression is equvialent to 2x2 + (4x-6x2) + 9 - (6x+3)?

Mathematics
1 answer:
stepladder [879]3 years ago
5 0
Hello there!

The correct answer is option B


2x² + (4x - 6x²) + 9 - (6x + 3)

Just take them out of the parentheses

2x² + 4x - 6x² + 9 -6x - 3

Combine like terms

2x² - 6x² + 4x - 6x - 3 + 9

= -4x² - 2x + 6

Thus,

The correct answer is option B
You might be interested in
1/3 divided by 4 someone help!!
kozerog [31]

Answer:

1/12

Step-by-step explanation:

1/3 x1/4=1/12

6 0
3 years ago
Read 2 more answers
Larry scored 10 points less than 3 times the number of points that Ross scored. Larry scored 10 points. How many points did Ross
densk [106]
The answer is 20. you'll have to multiply 10 times 3 and get 30. Then you'll subtract the 10 from the 30 and get 20
7 0
3 years ago
Read 2 more answers
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Find the length of FT¯¯¯¯¯¯¯ A. 77.71 B. 72.47 C. 56.84 D. 49.42
Mkey [24]

Answer:

D, 49.42

Step-by-step explanation:

ΔVFT=180-90-43=47

formula

a/sin A = b/sin B/ = c/sin C

So,

FV/sin90=53/sin47

FV=72.4684

FT=√(72.4684)^2-(53)^2

FT=49.4234

Ans:D

5 0
3 years ago
Read 2 more answers
Given the following system of equations: −x + y = 2 2x + 4y = 32 What action was completed to create this new equivalent system
tiny-mole [99]

Answer:

you just need to devide by 2 the second equation

Step-by-step explanation:

  • -x + y = 2 (you leave it as it is)

  • 2x + 4y =32 => 2x/2 +4y/2 = 32/2

=> x + 2y =16

we can devide or multiply in an equation by any number we want, as long as we do it to every term.

6 0
3 years ago
Read 2 more answers
Other questions:
  • a restaurant offers 7 appetizers and 11 main courses. in how many ways can a person order a two-course meal?
    6·2 answers
  • In a game the average score was 60 time score was 5/2 of the average what was Tim’s score?
    9·1 answer
  • Solve. 3x2 + 4x = –5 <br> using quadratic equation ...?
    10·1 answer
  • Given the function f (x) = x2 – 52, find f (x - 3) f (x – 3)​
    8·2 answers
  • 15pts please hurry <br><br>find <br>x= <br>y=<br>z=<br>w=
    14·1 answer
  • Andy's total college tuition and fees for a term in which he enrolls in 15 credit hours is $9064. His fees for the term are as f
    8·1 answer
  • Question 1
    9·1 answer
  • Find the value of X. Show your work.<br><br> Congruent triangle
    13·2 answers
  • Find xy when x(-7,10) and y(3,4)
    12·1 answer
  • Please help me out! I really need to get this done.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!