Answer:
Equal to 5000N
Explanation:
The stress on the material is defined by force per unit of cross-sectional area. So it depends on the force and the diameter of the wire, which is the same for both wires. The material that defines the breaking point, is also the same. Therefore, both wires have their breaking point the same at 5000N. The wire length plays no role in here.
Question:
The water molecules now in your body were once part of a molecular cloud. Only about onemillionth of the mass of a molecular cloud is in the form of water molecules, and the mass density of such a cloud is roughly 2.0×10−21 g/cm^3.
Estimate the volume of a piece of molecular cloud that has the same amount of water as your body.
Answer:
The volume of cloud that has the same density as the amount of water in our body is 1.4×10²⁵ cm³
Explanation:
Here, we have mass density of cloud = 2.0×10⁻²¹ g/cm^3
Density = Mass/Volume
Volume = Mass/Density = If the mass is 40 kg and the body is made up of 70% by mass of water, we have
28 kg water = 28000 g
Therefore the Volume = 28 kg/ 2.0×10⁻²¹ g/cm^3 = 1.4×10¹⁹ m³ = 1.4×10²⁵ cm³.
Therefore, the volume of cloud that has the same density as the amount of water in our body = 1.4×10²⁵ cm³.
Work done on the crate is 1411.2 J
Explanation:
Work done is defined as the product of force and the distance moved by the object. The unit of work done is in joules and denoted by the symbol J.
Work done = F * d
where F represents the force and d represents the distance moved by the object.
mass = 72 kg , distance moved by the object is given by 2.0 m
Force F = mass * gravity = 72 * 9.8
= 705.6 N =706 N.
Work done = 706 * 2.0 = 1412 J.
Answer:
The new period will be √6 *T
Explanation:
period ,T=2π√(L/g) ................equation 1
where T is the period on earth
gravitational acceleration on the moon is g/6
T1 = 2π√[L/(g/6)]
T1=2π√(6L/g) ...............equation 2
divide equation 2 by 1
T1/T =2π√(6L/g)÷2π√(L/g)
T1/T =√(6L/L)
T1/T =√6
T1 = √6 *T
Answer:
Explanation:
1 )
We shall apply conservation of momentum law to solve the problem.
mv = ( M +m) V , m and M are masses of small and large object , v is the velocity of small object before collision and V is the velocity of both the objects together after collision .
.5 x .2 = (1.5 + .5)V
V = .05 m /s
2 ) We shall use formula for velocity of object after elastic collision as follows
v₁ = 
m₁ and m₂ are masses of first and second object u₁ and u₂ are their initial velocity and v₁ and v₂ are their final velocity.
Putting the values
= 
= - .66 m /s
Since the sign is negative so it will be in opposite direction .